In classical mechanics, this topic presents a scalar equation of motion, which can be applied in any reference frame (rotating or non-rotating) (inertial or non-inertial) without the necessity of introducing fictitious forces. If we consider two particles A and B of mass [latex]m_a[/latex] and [latex]m_b[/latex] respectively, then the scalar equation of motion, is given by: [latex]\frac{1}{2}\,m_am_b\left[(\mathbf{v}_a-\mathbf{v}_b)^{2}+(\mathbf{a}_a-\mathbf{a}_b)\cdot(\mathbf{r}_a-\mathbf{r}_b)\right]=\frac{1}{2}\,m_am_b\left[2\int\left(\frac{\mathbf{F}_a}{m_a}-\frac{\mathbf{F}_b}{m_b}\right){\cdot}\;d(\mathbf{r}_a-\mathbf{r}_b)+\left(\frac{\mathbf{F}_a}{m_a}-\frac{\mathbf{F}_b}{m_b}\right)\cdot(\mathbf{r}_a-\mathbf{r}_b)\right][/latex] where [latex]\mathbf{v}_a[/latex] and [latex]\mathbf{v}_b[/latex] are the velocities of particles A and B, [latex]\mathbf{a}_a[/latex] and [latex]\mathbf{a}_b[/latex] are the accelerations of particles A and B, [latex]\mathbf{r}_a[/latex] and [latex]\mathbf{r}_b[/latex] are the positions of particles A and B, and [latex]\mathbf{F}_a[/latex] and [latex]\mathbf{F}_b[/latex] are the net forces acting on particles A and B. This scalar equation of motion is invariant under transformations between reference frames. In addition, this scalar equation of motion would be valid even if Newton's three laws of motion were false.