Abstract (provisional)
Background
Cutting edge research of human microbiome diversity has led to the development of the microbiome-gut-brain axis concept, based on the idea that gut microbes may have an impact on the behavior of their human hosts. Many examples of behavior-altering parasites are known to affect members of the animal kingdom. Some prominent examples include Ophiocordyceps unilateralis (fungi), Toxoplasma gondii (protista), Wolbachia (bacteria), Glyptapanteles sp. (arthropoda), Spinochordodes tellinii (nematomorpha) and Dicrocoelium dendriticum (flat worm). These organisms belong to a very diverse set of taxonomic groups suggesting that the phenomena of parasitic host control might be more common in nature than currently established and possibly overlooked in humans.
Presentation of the hypothesis
Some microorganisms would gain an evolutionary advantage by encouraging human hosts to perform certain rituals that favor microbial transmission. We hypothesize that certain aspects of religious behavior observed in the human society could be influenced by microbial host control and that the transmission of some religious rituals could be regarded as the simultaneous transmission of both ideas (memes) and parasitic organisms.
Testing the hypothesis
We predict that next-generation microbiome sequencing of samples obtained from gut or brain tissues of control subjects and subjects with a history of voluntary active participation in certain religious rituals that promote microbial transmission will lead to the discovery of microbes, whose presence has a consistent and positive association with religious behavior. Our hypothesis also predicts a decline of participation in religious rituals in societies with improved sanitation.
Implications of the hypothesis
If proven true, our hypothesis may provide insights on the origin and pervasiveness of certain religious practices and provide an alternative explanation for recently published positive associations between parasite-stress and religiosity. The discovery of novel microorganisms that affect host behavior may improve our understanding of neurobiology and neurochemistry, while the diversity of such organisms may be of interest to evolutionary biologists and religious scholars.
Reviewers: This article was reviewed by Prof. Dan Graur, Dr. Rob Knight and Dr. Eugene Koonin