Jump to content

Trurl

Senior Members
  • Posts

    568
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by Trurl

  1. How accurate is the views number under posts? Not the views to profile. I thought it was accurate because it increased slightly over time. Also the post has replies. I wanted to inspire new cryptographers. I believed it was so simple and would spread fast. Is 11,000 to large? Is it accurate?
  2. Once I was enrolled in a master’s class in Adult Education. However one professor failed my curriculum outline. I retook the class and got a B. However, it became too expensive.

    So I took my curriculum and taught it here on SFN. I thought, “if I could inspire adults to factor SemiPrimes I would create the ultimate cryptographers.”

    So with over 11,000 views, what did you think of the class?

    1. Show previous comments  1 more
    2. StringJunky

      StringJunky

      Most of those views are likely search engine crawlers. I've got 88000 profile views, which is about 20 a day. I  very much doubt my profile is being viewed by people 20 times a day. 

    3. Trurl

      Trurl

      Darn it. I thought it went viral. Darn the twitter bots.

    4. Sensei

      Sensei

      @Trurl @StringJunky

      Twitter bot https://en.wikipedia.org/wiki/Twitter_bot is automatically answering chat bot pretending or replacing human in repeatable and boring questions and activities. Which has nothing to do with search-engine crawlers.. Totally, totally, different branch of IT..

  3. In the book, DBB, the author says the complexity and construction of living creatures cannot happen without design. Like when you see a bridge and know engineers developed it. It is not proof but it is logical. But on a side note, we do have history and archeology but they are limited because we can only look at what’s left over. We can say communication is better today early humans didn’t have written language, but these people were building arches and the Great Wall of China. So by what method do we tell how advanced they are? We thing man advanced became smarter and now we have nuclear power, electricity, and cars but that took thousands of years. Are we smarter than our ancestors? It is more logical to say technology improved with time, but is there a measure of technology advancement? I mean if we graph it mathematically what does the rate of change show? What is putting evolution in motion? DNA and folding proteins? What puts everything together? But what I think is evolving is the mind across a lifetime. I mean both nature vs. nature occurring as one. If connecting proteins is like connecting transistors when does the mind develop. We don’t have Ai yet. When does a evolved organism start to think? These are just my thoughts. I’m sure everyone ponders them sometimes. Things like the ancient Greeks building on what was already known about parallel lines. When you have to hunt and gather food, who thinks about parallel lines? All that goes beyond the scope of the book. But evolution to me is what occurs after the organism is formed.
  4. Actually I was referring to the creative designer which you also think is far fetched. But since you bring it up what in science says are ancestors can’t be more advanced? I don’t mean this as an insult. I want you to ponder it. Things like pyramids, construction, knowledge of math. Do we have anyone in the world today that is operating at that level to produce such things?
  5. This is going to sound ignorant. I apologize ahead of time. I have limited knowledge of “The Traveling Sales Man” problem. But maybe the problem is drafting. If circle were drawn with the radius of the distance between 2 points would the straight line distance between where the circles intersect be the shortest path? That is easy to say. But I don’t know how to test it. I also haven’t studied current attempts. Is this similar to others attempts?
  6. There is a difference between knowing something and teaching it. And not all learning is done through a formal school. But what I understand about you post is that you want to improve learning. Which you can do on a small scale. Become a teacher. But writing curriculum is another job. You can’t start a formal education without employees. It is easy to say no boring assignments or standardized tests, but those are the necessary evil to measure and assess the students. I agree with the others about learning the script. I think some of your problem with current learning is the instructor and not the curriculum. I was taking courses to become certified as an adult editor and the instructor in one class failed me. Which I believed was unjustified. I retook the class and got an A or B. But the point is the instructor makes or breaks a class. You don’t like the “boring assignments.” But it is only boring due to the instructor or students. Learning is fun. It is also a lot of work. You want it to be fun. The fun is a little bit more difficult to see in a formal setting. When I read your post it sounds like a problem with a teacher. You want to become a better teacher. But “going by the script” is the only way. Concentrate on the material and what you would do to fix it. And keep your attitude towards the teacher friendly. They are in control of the classroom. You benefit in no way making them an adversary.
  7. I know no one believes me. But this is proof of the Pappy Craylar Conjecture. It is attached in PDF format, because I had to highlight some numbers. Notice how the error of 3 equals 3*7=24 and notice how 11 does the same. The position of the Prime numbers in the first 1000 Prime numbers corresponds to the position on the equation. In other words, 3 is in the second position on the set of numbers and 11 is the fifth position. The test Primes are in the order that the Prime numbers occur. I have highlighted the numbers that represent the equations. I know the equations are difficult to read in standard form, however these are the same equations I have been using. So I challenge you do download the attached PDF. 20220622ProofSFN.pdf
  8. Like I said intelligent design is not always related to creationism. I was contrasting my post to the thread “ Who created God” Some theorize that there is no evidence of God today so why did he exist in the past then decide not to show himself today? But we have evidence of intelligent design today. We clone, gene edit, and such. So if creative design exists today what about the past? That is my argument. The author is explaining the biological systems are too complex not to be designed. He uses verbose analogies such as why blood clots and how the eye reacts to light. It’s over done. We know it is complex. On a different point why in science do we always have to have a beginning? Humans have a beginning and end? I realize we can’t picture a universe that always existed, but is that a limitation based on us? And note that science and religion were not always opposites. Early scientists were to explore the mysterious of Gods creation. You could argue scientists have been persecuted by religion. But much of Darwin was used to fuel the holocaust. Even Einstein barely escaped with his life. But my point is we don’t all have the same opinions, but different views doesn’t mean war. Evolution has many logical theories but aren’t we more than that? I mean if you look at cells you think evolution. But what if you look in your life?
  9. If you read the book you may like it. I read 4 chapters and it does not promote religion. It is science. There is a difference between intelligent design and God. The book exposes the limitations of Darwinism. But what if an organ was 3D printed or A.I. perfected? Would the android ask, “Who created my creator?”
  10. Trurl

    who created god?

    Why would he have to be created? We talk about infinity in the forums all the time. How about always was.
  11. Ok so I need some assistance with the publishing of an article. If I can convince a cryptographer that the Pappy Craylar conjecture is valid they will publish my article in a magazine with a circulation of 51,000.

     

    So if you have read my post “Simple Yet Interesting” and believe that SemiPrime factors are less than 1, please let me know by posting in that thread.

  12. For students or amateurs (myself included), I recommend Wikipedia or https://oeis.org/A000040 Here is a great number theory resource that can be imported to Excel or Mathematica. I imported the 1st 1000 Primes into Mathematica. I was very proud until I learned Mathematica had a library built in, in my S.Y.I post. I recommend downloading the notebook file in my post and importing your own file. But the possibility of manipulating numbers on oeis and Wikipedia sites is endless.
  13. No. I am just saying you can’t go back to no weapons. I believe the assault weapons ban that expired only covered new manufacturing. Just like the legalization of weed you can’t fix the problem by making it illegal again. Both are problems. But I am saying if the gun lobbies lose one restriction they know more restrictions will follow. So we can’t agree on any laws. It is important to note, every time a ban on guns is mentioned it only increases sales. We are not in disagreement. I am just stating that is the reason there is no easy fix. We can’t agree on masks or abortion. How can we pass gun control? Make gun control a federal law with universal background checks?
  14. I am not for the sale of assault rifles. But many already own them. You cannot eliminate them. It is a dangerous move to change the Constitution. I know that seems ridiculous. But that is why the gun laws are debated so heavily. If the gun owners concede to one law they will be subjected to more laws eventually leading to loss of all rights. I don’t agree but this is why nothing is done. We need guns to be tied to a psychological program on our cell phone. Just as Google tracks us. Things like gps location, flagged searches, and the psychological profiles that all the data creates. This seems impossible but what if a gun check required your online profile to be searched?
  15. Calvinism vs Arminianism
  16. You must be a scientist. Always striving to discover something new. I too am aligned with the free will side. But there is also compelling arguments for predetermined side. Look at you phone constantly monitoring and influencing you. The question to ask is who controls such events? Is it random? Who would be a separate observer to intentionally influence others? And all these multiverses would not be possible if we had no choice. Now my question is how would we even know determined or fixed. We have a first person perspective and are oblivious to how it works. I just like the discussion. I think I am in control of my decisions, but if you watch the lecture you may doubt the certainty of fee will. But like you free will is good enough for me. I shouldn’t have let that lecture influence me.
  17. I was watching a lecture on the philosophy of science fiction and there was a debate on the movie The Matrix. All about how the trilogy is a debate on free will. If God knows are character and presents us with a decision and knows our response, did we have a choice? And if we didn’t have a choice who is to blame? I want to pose the question: If we don’t have free will how can anything new be created? And if there was no free will how could you prove something is new? For scientists and engineers they don’t think in philosophy. They are makers. I believe in free will. I don’t see the point of things being predetermined. Of course me not liking a predetermined system does not mean it doesn’t exist.
  18. p = 3 (p^4/((p*Data)^2 + p) ) N[(Data^4/((p*Data)^2 + Data) )] Data = Import["C:\\Users\\Trurl\\Documents\\20220405PrimeTable.csv", "CSV"] These 2 equations are the pattern. N[(Data^4/((p*Data)^2+Data) )] is the pattern to find the smaller factor and (p^4/((p*Data)^2+p) ) is the equation to find the pattern of the error. I post here because I think they were being confused. The start is the first 1000 Primes imported from Wikipedia. Notice 2 is not always considered a Prime number and yields imaginary results. I know I have moved on from this math problem but I thought this post was significant. Looking at the numbers over 1000 instead of 85=5*17. I'll upload the file for download. {{"2", 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71}, {73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173}, {179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281}, {283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409}, {419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541}, {547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659}, {661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809}, {811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941}, {947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069}, {1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223}, {1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373}, {1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511}, {1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657}, {1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811}, {1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987}, {1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129}, {2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287}, {2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423}, {2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617}, {2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741}, {2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903}, {2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079}, {3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257}, {3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413}, {3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571}, {3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727}, {3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907}, {3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057}, {4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231}, {4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409}, {4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583}, {4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751}, {4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937}, {4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087}, {5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279}, {5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443}, {5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639}, {5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791}, {5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939}, {5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133}, {6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301}, {6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473}, {6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673}, {6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833}, {6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997}, {7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207}, {7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411}, {7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561}, {7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723}, {7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919}} p = 3 (p^4/((p*Data)^2 + p) ) 3 {{81/(3 + 9 ("2")^2), 27/28, 27/76, 27/148, 27/364, 27/508, 27/868, 27/ 1084, 27/1588, 27/2524, 27/2884, 27/4108, 27/5044, 27/5548, 27/6628, 27/ 8428, 27/10444, 27/11164, 27/13468, 27/15124}, {27/15988, 27/18724, 27/ 20668, 27/23764, 27/28228, 27/30604, 27/31828, 27/34348, 27/35644, 27/38308, 27/48388, 27/51484, 27/56308, 27/57964, 27/66604, 27/68404, 27/73948, 27/ 79708, 27/83668, 27/89788}, {27/96124, 27/98284, 27/109444, 27/111748, 27/ 116428, 27/118804, 27/133564, 27/149188, 27/154588, 27/157324, 27/162868, 27/171364, 27/174244, 27/189004, 27/198148, 27/207508, 27/217084, 27/220324, 27/230188, 27/236884}, {27/240268, 27/257548, 27/282748, 27/290164, 27/ 293908, 27/301468, 27/328684, 27/340708, 27/361228, 27/365404, 27/373828, 27/386644, 27/404068, 27/417388, 27/430924, 27/440068, 27/453964, 27/472828, 27/482404, 27/501844}, {27/526684, 27/531724, 27/557284, 27/562468, 27/ 578164, 27/588748, 27/604804, 27/626548, 27/637564, 27/643108, 27/654268, 27/688324, 27/711508, 27/723244, 27/747004, 27/759028, 27/777244, 27/814324, 27/820588, 27/878044}, {27/897628, 27/930748, 27/950908, 27/971284, 27/ 978124, 27/998788, 27/1033708, 27/1054948, 27/1076404, 27/1083604, 27/ 1105348, 27/1127308, 27/1142068, 27/1149484, 27/1194484, 27/1232644, 27/ 1240348, 27/1255828, 27/1279228, 27/1302844}, {27/1310764, 27/1358788, 27/ 1374988, 27/1399468, 27/1432444, 27/1474204, 27/1508044, 27/1550884, 27/ 1585588, 27/1611868, 27/1638364, 27/1656148, 27/1692004, 27/1719148, 27/ 1737364, 27/1774084, 27/1792588, 27/1858108, 27/1905628, 27/1963444}, {27/ 1973164, 27/2022124, 27/2031988, 27/2051788, 27/2061724, 27/2111764, 27/ 2182828, 27/2203348, 27/2213644, 27/2234308, 27/2307388, 27/2328484, 27/ 2339068, 27/2360308, 27/2467948, 27/2489764, 27/2533684, 27/2589124, 27/ 2633908, 27/2656444}, {27/2690428, 27/2724628, 27/2805268, 27/2828524, 27/ 2863588, 27/2898868, 27/2946244, 27/2982028, 27/3054244, 27/3078508, 27/ 3115084, 27/3127324, 27/3188884, 27/3201268, 27/3238564, 27/3301204, 27/ 3313804, 27/3377164, 27/3389908, 27/3428284}, {27/3544708, 27/3570844, 27/ 3583948, 27/3610228, 27/3649828, 27/3689644, 27/3743068, 27/3783388, 27/ 3823924, 27/3974404, 27/3988228, 27/4057708, 27/4113724, 27/4184284, 27/ 4226908, 27/4269748, 27/4327204, 27/4414108, 27/4443268, 27/4487188}, {27/ 4531324, 27/4546084, 27/4590508, 27/4680004, 27/4755244, 27/4892188, 27/ 4907524, 27/4938268, 27/4984564, 27/5000044, 27/5046628, 27/5077804, 27/ 5093428, 27/5124748, 27/5219284, 27/5235124, 27/5282788, 27/5556964, 27/ 5606068, 27/5655388}, {27/5721484, 27/5871604, 27/5955844, 27/6074788, 27/ 6108988, 27/6126124, 27/6160468, 27/6212164, 27/6281428, 27/6316204, 27/ 6333628, 27/6386044, 27/6491524, 27/6580084, 27/6597868, 27/6633508, 27/ 6651364, 27/6687148, 27/6741004, 27/6849364}, {27/6958588, 27/7031884, 27/ 7142548, 27/7198204, 27/7235428, 27/7291444, 27/7366468, 27/7404124, 27/ 7479724, 27/7517668, 27/7651228, 27/7689604, 27/7747348, 27/7766644, 27/ 7805308, 27/7863484, 27/7882924, 27/7941388, 27/8039308, 27/8236948}, {27/ 8296708, 27/8336668, 27/8356684, 27/8598748, 27/8639428, 27/8659804, 27/ 8762044, 27/8885524, 27/8906188, 27/9009868, 27/9093244, 27/9156028, 27/ 9219028, 27/9282244, 27/9473188, 27/9537268, 27/9580108, 27/9601564, 27/ 9730804, 27/9839164}, {27/9969988, 27/10057684, 27/10234228, 27/10389964, 27/10457068, 27/10501924, 27/10524388, 27/10569388, 27/10591924, 27/ 10704964, 27/10841404, 27/10909948, 27/10978708, 27/11186284, 27/11209468, 27/11395804, 27/11419204, 27/11678188, 27/11749324, 27/11844508}, {27/ 11916148, 27/11964028, 27/11988004, 27/12036028, 27/12132364, 27/12204868, 27/12326188, 27/12350524, 27/12472564, 27/12644428, 27/12767908, 27/ 12842284, 27/12991684, 27/13016668, 27/13066708, 27/13091764, 27/13217404, 27/13368964, 27/13394308, 27/13597924}, {27/13623484, 27/13700308, 27/ 13751644, 27/13777348, 27/13906228, 27/14009764, 27/14244124, 27/14559628, 27/14612548, 27/14692108, 27/14798524, 27/15012508, 27/15039364, 27/ 15093148, 27/15201004, 27/15417868, 27/15445084, 27/15499588, 27/15608884, 27/15691108}, {27/15773548, 27/15828628, 27/15994444, 27/16022164, 27/ 16328668, 27/16412764, 27/16440844, 27/16525228, 27/16581604, 27/16666348, 27/16864924, 27/16950388, 27/17007484, 27/17036068, 27/17121964, 27/ 17179348, 27/17265604, 27/17438764, 27/17525668, 27/17612788}, {27/17816908, 27/17875444, 27/17963428, 27/18140044, 27/18258268, 27/18347188, 27/ 18406588, 27/18795028, 27/19066324, 27/19217884, 27/19339564, 27/19400548, 27/19492204, 27/19522804, 27/19614748, 27/19953724, 27/20139844, 27/ 20170948, 27/20420644, 27/20546068}, {27/20608924, 27/20798068, 27/21019828, 27/21178948, 27/21210844, 27/21274708, 27/21402724, 27/21498988, 27/ 21595468, 27/21659908, 27/21692164, 27/21756748, 27/21853804, 27/21983548, 27/22048564, 27/22081108, 27/22178884, 27/22342324, 27/22375084, 27/ 22539244}, {27/22671004, 27/22737028, 27/22968868, 27/23135188, 27/23335564, 27/23369044, 27/23469628, 27/23536804, 27/23570428, 27/23840284, 27/ 24077668, 27/24145708, 27/24247948, 27/24384604, 27/24487348, 27/24555964, 27/24865924, 27/25004308, 27/25177828, 27/25282228}, {27/25386844, 27/ 25526668, 27/25701988, 27/25913164, 27/26160628, 27/26231548, 27/26338108, 27/26444884, 27/26480524, 27/26982004, 27/27018004, 27/27198364, 27/ 27343084, 27/27415588, 27/27670108, 27/27743044, 27/27889204, 27/28109164, 27/28219468, 27/28440724}, {27/28514668, 27/28625764, 27/28997644, 27/ 29184484, 27/29221924, 27/29522308, 27/30013708, 27/30089668, 27/30127684, 27/30356284, 27/30470908, 27/30547444, 27/30777628, 27/30893044, 27/ 31047268, 27/31124524, 27/31279324, 27/31707004, 27/31746028, 27/ 31824148}, {27/31863244, 27/32098324, 27/32650204, 27/32689804, 27/32808748, 27/32927908, 27/33047284, 27/33126988, 27/33246724, 27/33286684, 27/ 33526948, 27/33607228, 27/33848644, 27/33888964, 27/34090924, 27/34131388, 27/34455964, 27/34496644, 27/34822948, 27/34945708}, {27/35356468, 27/ 35686804, 27/35852548, 27/35935564, 27/35977108, 27/36060268, 27/36101884, 27/36561244, 27/36729004, 27/36981364, 27/37107868, 27/37319188, 27/ 37361524, 27/37446268, 27/37573564, 27/37616044, 27/37743628, 27/37956748, 27/37999444, 27/38256124}, {27/38470684, 27/38513668, 27/38728948, 27/ 39031348, 27/39161308, 27/39248068, 27/39378388, 27/39552484, 27/39683308, 27/39814348, 27/40164844, 27/40428724, 27/40472788, 27/40560988, 27/ 40870444, 27/41003428, 27/41092204, 27/41270044, 27/41492884, 27/ 41671588}, {27/41805868, 27/41940364, 27/42435364, 27/42570868, 27/42616084, 27/42842524, 27/43160548, 27/43251628, 27/43388428, 27/43800124, 27/ 43845988, 27/44075668, 27/44398228, 27/44490604, 27/44536828, 27/44768308, 27/45093388, 27/45186484, 27/45372964, 27/45793948}, {27/45887764, 27/ 46028668, 27/46075684, 27/46169788, 27/46311124, 27/46358284, 27/46641748, 27/46736428, 27/47211268, 27/47736364, 27/48024004, 27/48072028, 27/ 48168148, 27/48312508, 27/48457084, 27/48505324, 27/48650188, 27/49183204, 27/49231804, 27/49377748}, {27/49767988, 27/49914724, 27/50208844, 27/ 50257948, 27/50405404, 27/50700964, 27/51096388, 27/51145924, 27/51245068, 27/51393964, 27/51742228, 27/51841948, 27/51891844, 27/52341988, 27/ 52945204, 27/53197564, 27/53349268, 27/53399884, 27/53653324, 27/ 53704084}, {27/53958244, 27/54009148, 27/54264028, 27/54417244, 27/54468364, 27/54724324, 27/54775588, 27/55032268, 27/55186564, 27/55392628, 27/ 56168788, 27/56428708, 27/56480764, 27/56741404, 27/56950348, 27/57107308, 27/57369388, 27/57842644, 27/58000828, 27/58317844}, {27/58635724, 27/ 58688788, 27/59167444, 27/59327428, 27/59434204, 27/59594548, 27/59755108, 27/60238084, 27/60291868, 27/60561148, 27/60939148, 27/61101508, 27/ 61209868, 27/61264084, 27/61372588, 27/62025628, 27/62080204, 27/62408164, 27/62572468, 27/63011668}, {27/63231844, 27/63397228, 27/63562828, 27/ 64060924, 27/64505308, 27/64560964, 27/64672348, 27/64839604, 27/64895404, 27/65062948, 27/65230708, 27/65510788, 27/65679124, 27/66016444, 27/ 66354628, 27/66863524, 27/66920188, 27/67090324, 27/67203868, 27/ 67716004}, {27/67944244, 27/68631268, 27/68746108, 27/68803564, 27/68918548, 27/69091204, 27/69148804, 27/69494908, 27/69610468, 27/70015684, 27/ 70887964, 27/71179924, 27/71355388, 27/71706964, 27/72118228, 27/72294844, 27/72589684, 27/72944284, 27/73003468, 27/73121908}, {27/73299748, 27/ 73537204, 27/73715548, 27/74013268, 27/74072884, 27/74192188, 27/74610508, 27/74790148, 27/74970004, 27/75090028, 27/75270244, 27/75330364, 27/ 75631324, 27/75691588, 27/76174564, 27/76537804, 27/76780444, 27/77327788, 27/77449684, 27/77632708}, {27/77999404, 27/78060604, 27/78244348, 27/ 78428308, 27/78612484, 27/79474828, 27/79660228, 27/80093668, 27/80217724, 27/80466124, 27/80777164, 27/81026428, 27/81401044, 27/81964588, 27/ 82090084, 27/82152868, 27/82278508, 27/83034364, 27/83413588, 27/ 83603524}, {27/83666884, 27/84174628, 27/84365428, 27/84556444, 27/85002988, 27/85322668, 27/85771228, 27/85899604, 27/86865484, 27/87059308, 27/ 87253348, 27/87447604, 27/87706948, 27/87901708, 27/88031668, 27/88096684, 27/88487284, 27/88682908, 27/88813444, 27/88878748}, {27/89074804, 27/ 89795524, 27/89992588, 27/90058324, 27/90189868, 27/90783004, 27/90849028, 27/90981148, 27/91378084, 27/91444324, 27/91643188, 27/91775884, 27/ 92640748, 27/92840908, 27/93041284, 27/93174988, 27/93442684, 27/93777844, 27/94854388, 27/95394964}, {27/95462644, 27/95665828, 27/95801404, 27/ 95869228, 27/96004948, 27/96072844, 27/96412684, 27/96889468, 27/97094164, 27/97230748, 27/97504204, 27/97846564, 27/98052268, 27/98739508, 27/ 98877244, 27/98946148, 27/99153004, 27/100190524, 27/100329268, 27/ 100607044}, {27/100954804, 27/101163748, 27/101372908, 27/101652124, 27/ 101861788, 27/102281764, 27/102421948, 27/102632404, 27/102702604, 27/ 102913348, 27/103053964, 27/103265068, 27/103335484, 27/103687924, 27/ 103758484, 27/104323828, 27/104536228, 27/105245788, 27/105387988, 27/ 105815164}, {27/106314628, 27/107317084, 27/107532508, 27/108252148, 27/ 108396364, 27/109046524, 27/109336108, 27/109553548, 27/109698628, 27/ 109916428, 27/110425468, 27/110643988, 27/110862724, 27/111227764, 27/ 111300844, 27/111666604, 27/112106308, 27/112399924, 27/112767484, 27/ 112841068}, {27/113209348, 27/113504404, 27/113947708, 27/114317788, 27/ 115208428, 27/115282804, 27/115431628, 27/115729564, 27/115953268, 27/ 116102524, 27/116401324, 27/117075028, 27/117450148, 27/117675508, 27/ 117901084, 27/117976324, 27/118202188, 27/118579108, 27/119032204, 27/ 119107804}, {27/119486164, 27/119713468, 27/119940988, 27/120168724, 27/ 120472708, 27/120700948, 27/121081828, 27/121310644, 27/121386964, 27/ 121616068, 27/121845388, 27/122074924, 27/122457964, 27/122764828, 27/ 123687724, 27/123918988, 27/124768804, 27/124846204, 27/125543884, 27/ 125699188}, {27/126010084, 27/126399244, 27/127570324, 27/127883524, 27/ 128589628, 27/128746804, 27/128825428, 27/129218908, 27/129455284, 27/ 129534124, 27/129770788, 27/129928684, 27/130640404, 27/130957348, 27/ 131433484, 27/132149308, 27/132787228, 27/133026844, 27/133106764, 27/ 133586788}, {27/133827124, 27/134228164, 27/134308444, 27/134710204, 27/ 134790628, 27/135032044, 27/135434884, 27/135999868, 27/136161508, 27/ 137133364, 27/137214508, 27/137864524, 27/137945884, 27/138353044, 27/ 138434548, 27/138842428, 27/139659988, 27/139823788, 27/139905724, 27/ 140069668}, {27/140397844, 27/141055348, 27/141302308, 27/141549484, 27/ 141631924, 27/142127068, 27/142788604, 27/143119948, 27/143285764, 27/ 143534668, 27/144782428, 27/144865804, 27/145283044, 27/145366564, 27/ 145617268, 27/145784524, 27/146035588, 27/146286868, 27/146622244, 27/ 146874028}, {27/147042004, 27/147546508, 27/147799084, 27/148136188, 27/ 148642564, 27/148811548, 27/149403748, 27/149912284, 27/150336724, 27/ 151357828, 27/151613644, 27/152125924, 27/152382388, 27/152467924, 27/ 153410404, 27/153753844, 27/154527988, 27/154958908, 27/155217748, 27/ 155822548}, {27/155995564, 27/156082108, 27/156341884, 27/156775324, 27/ 157122508, 27/157383148, 27/157557028, 27/157818028, 27/159126268, 27/ 159738628, 27/160176748, 27/160264444, 27/160791124, 27/161230684, 27/ 161318668, 27/162023404, 27/162111604, 27/162906484, 27/163969348, 27/ 164768764}, {27/165035668, 27/165748468, 27/166552204, 27/166820548, 27/ 166910044, 27/167716588, 27/167896084, 27/168165508, 27/168255364, 27/ 168705004, 27/169065148, 27/169515868, 27/169786588, 27/170057524, 27/ 170419108, 27/170600044, 27/170871628, 27/170962204, 27/171415444, 27/ 171506164}, {27/172050988, 27/172232788, 27/172505668, 27/172778764, 27/ 172869844, 27/173416828, 27/173599348, 27/174238924, 27/175062964, 27/ 175246348, 27/175521604, 27/176440684, 27/176624788, 27/176993284, 27/ 177269908, 27/177454444, 27/177823804, 27/178008628, 27/178656268, 27/ 178934188}, {27/179119588, 27/179769244, 27/180327028, 27/180513148, 27/ 180606244, 27/182005564, 27/182192548, 27/183316468, 27/183597988, 27/ 183879724, 27/184443844, 27/185008828, 27/185669068, 27/185952388, 27/ 186141388, 27/186235924, 27/186425068, 27/187277404, 27/187561948, 27/ 188131684}} N[(p^4/((p*Data)^2 + p) )] {{81./(3. + 9. ("2")^2), 0.964286, 0.355263, 0.182432, 0.0741758, 0.0531496, 0.031106, 0.0249077, 0.0170025, 0.0106973, 0.009362, 0.00657254, 0.00535289, 0.00486662, 0.00407363, 0.00320361, 0.00258522, 0.00241849, 0.00200475, 0.00178524}, {0.00168877, 0.001442, 0.00130637, 0.00113617, 0.000956497, 0.000882238, 0.00084831, 0.000786072, 0.000757491, 0.000704814, 0.00055799, 0.000524435, 0.000479506, 0.000465806, 0.000405381, 0.000394714, 0.000365121, 0.000338736, 0.000322704, 0.000300708}, {0.000280887, 0.000274714, 0.000246702, 0.000241615, 0.000231903, 0.000227265, 0.00020215, 0.00018098, 0.000174658, 0.00017162, 0.000165778, 0.000157559, 0.000154955, 0.000142854, 0.000136262, 0.000130115, 0.000124376, 0.000122547, 0.000117295, 0.00011398}, {0.000112375, 0.000104835, 0.0000954914, 0.0000930508, 0.0000918655, 0.0000895617, 0.0000821458, 0.0000792467, 0.000074745, 0.0000738908, 0.0000722257, 0.0000698317, 0.0000668204, 0.000064688, 0.0000626561, 0.0000613542, 0.0000594761, 0.0000571032, 0.0000559697, 0.0000538016}, {0.0000512641, 0.0000507782, 0.0000484493, 0.0000480027, 0.0000466996, 0.00004586, 0.0000446426, 0.0000430933, 0.0000423487, 0.0000419836, 0.0000412675, 0.0000392257, 0.0000379476, 0.0000373318, 0.0000361444, 0.0000355718, 0.0000347381, 0.0000331563, 0.0000329032, 0.0000307502}, {0.0000300793, 0.0000290089, 0.0000283939, 0.0000277983, 0.0000276039, 0.0000270328, 0.0000261196, 0.0000255937, 0.0000250835, 0.0000249169, 0.0000244267, 0.0000239509, 0.0000236413, 0.0000234888, 0.0000226039, 0.0000219041, 0.0000217681, 0.0000214998, 0.0000211065, 0.0000207239}, {0.0000205987, 0.0000198706, 0.0000196365, 0.000019293, 0.0000188489, 0.000018315, 0.000017904, 0.0000174094, 0.0000170284, 0.0000167508, 0.0000164799, 0.0000163029, 0.0000159574, 0.0000157055, 0.0000155408, 0.0000152191, 0.000015062, 0.0000145309, 0.0000141686, 0.0000137513}, {0.0000136836, 0.0000133523, 0.0000132875, 0.0000131593, 0.0000130958, 0.0000127855, 0.0000123693, 0.0000122541, 0.0000121971, 0.0000120843, 0.0000117015, 0.0000115955, 0.0000115431, 0.0000114392, 0.0000109403, 0.0000108444, 0.0000106564, 0.0000104282, 0.0000102509, 0.000010164}, {0.0000100356, 9.90961*10^-6, 9.62475*10^-6, 9.54561*10^-6, 9.42873*10^-6, 9.31398*10^-6, 9.16421*10^-6, 9.05424*10^-6, 8.84016*10^-6, 8.77048*10^-6, 8.6675*10^-6, 8.63358*10^-6, 8.46691*10^-6, 8.43416*10^-6, 8.33703*10^-6, 8.17883*10^-6, 8.14774*10^-6, 7.99487*10^-6, 7.96482*10^-6, 7.87566*10^-6}, {7.61699*10^-6, 7.56124*10^-6, 7.53359*10^-6, 7.47875*10^-6, 7.39761*10^-6, 7.31778*10^-6, 7.21333*10^-6, 7.13646*10^-6, 7.06081*10^-6, 6.79347*10^-6, 6.76992*10^-6, 6.654*10^-6, 6.5634*10^-6, 6.45272*10^-6, 6.38765*10^-6, 6.32356*10^-6, 6.23959*10^-6, 6.11675*10^-6, 6.07661*10^-6, 6.01713*10^-6}, {5.95852*10^-6, 5.93918*10^-6, 5.8817*10^-6, 5.76923*10^-6, 5.67794*10^-6, 5.519*10^-6, 5.50176*10^-6, 5.4675*10^-6, 5.41672*10^-6, 5.39995*10^-6, 5.35011*10^-6, 5.31726*10^-6, 5.30095*10^-6, 5.26855*10^-6, 5.17312*10^-6, 5.15747*10^-6, 5.11094*10^-6, 4.85877*10^-6, 4.81621*10^-6, 4.77421*10^-6}, {4.71906*10^-6, 4.5984*10^-6, 4.53336*10^-6, 4.4446*10^-6, 4.41972*10^-6, 4.40735*10^-6, 4.38278*10^-6, 4.34631*10^-6, 4.29839*10^-6, 4.27472*10^-6, 4.26296*10^-6, 4.22797*10^-6, 4.15927*10^-6, 4.10329*10^-6, 4.09223*10^-6, 4.07024*10^-6, 4.05932*10^-6, 4.0376*10^-6, 4.00534*10^-6, 3.94197*10^-6}, {3.8801*10^-6, 3.83965*10^-6, 3.78016*10^-6, 3.75094*10^-6, 3.73164*10^-6, 3.70297*10^-6, 3.66526*10^-6, 3.64662*10^-6, 3.60976*10^-6, 3.59154*10^-6, 3.52885*10^-6, 3.51123*10^-6, 3.48506*10^-6, 3.4764*10^-6, 3.45918*10^-6, 3.43359*10^-6, 3.42512*10^-6, 3.39991*10^-6, 3.3585*10^-6, 3.27791*10^-6}, {3.2543*10^-6, 3.2387*10^-6, 3.23095*10^-6, 3.13999*10^-6, 3.12521*10^-6, 3.11785*10^-6, 3.08147*10^-6, 3.03865*10^-6, 3.0316*10^-6, 2.99671*10^-6, 2.96924*10^-6, 2.94888*10^-6, 2.92873*10^-6, 2.90878*10^-6, 2.85015*10^-6, 2.831*10^-6, 2.81834*10^-6, 2.81204*10^-6, 2.77469*10^-6, 2.74414*10^-6}, {2.70813*10^-6, 2.68451*10^-6, 2.63821*10^-6, 2.59866*10^-6, 2.58199*10^-6, 2.57096*10^-6, 2.56547*10^-6, 2.55455*10^-6, 2.54911*10^-6, 2.52219*10^-6, 2.49045*10^-6, 2.47481*10^-6, 2.45931*10^-6, 2.41367*10^-6, 2.40868*10^-6, 2.36929*10^-6, 2.36444*10^-6, 2.312*10^-6, 2.298*10^-6, 2.27954*10^-6}, {2.26583*10^-6, 2.25677*10^-6, 2.25225*10^-6, 2.24326*10^-6, 2.22545*10^-6, 2.21223*10^-6, 2.19046*10^-6, 2.18614*10^-6, 2.16475*10^-6, 2.13533*10^-6, 2.11468*10^-6, 2.10243*10^-6, 2.07825*10^-6, 2.07426*10^-6, 2.06632*10^-6, 2.06237*10^-6, 2.04276*10^-6, 2.0196*10^-6, 2.01578*10^-6, 1.9856*10^-6}, {1.98187*10^-6, 1.97076*10^-6, 1.9634*10^-6, 1.95974*10^-6, 1.94158*10^-6, 1.92723*10^-6, 1.89552*10^-6, 1.85444*10^-6, 1.84773*10^-6, 1.83772*10^-6, 1.82451*10^-6, 1.7985*10^-6, 1.79529*10^-6, 1.78889*10^-6, 1.7762*10^-6, 1.75121*10^-6, 1.74813*10^-6, 1.74198*10^-6, 1.72978*10^-6, 1.72072*10^-6}, {1.71173*10^-6, 1.70577*10^-6, 1.68809*10^-6, 1.68517*10^-6, 1.65353*10^-6, 1.64506*10^-6, 1.64225*10^-6, 1.63387*10^-6, 1.62831*10^-6, 1.62003*10^-6, 1.60096*10^-6, 1.59288*10^-6, 1.58754*10^-6, 1.58487*10^-6, 1.57692*10^-6, 1.57165*10^-6, 1.5638*10^-6, 1.54827*10^-6, 1.5406*10^-6, 1.53298*10^-6}, {1.51541*10^-6, 1.51045*10^-6, 1.50305*10^-6, 1.48842*10^-6, 1.47878*10^-6, 1.47162*10^-6, 1.46687*10^-6, 1.43655*10^-6, 1.41611*10^-6, 1.40494*10^-6, 1.3961*10^-6, 1.39171*10^-6, 1.38517*10^-6, 1.383*10^-6, 1.37652*10^-6, 1.35313*10^-6, 1.34063*10^-6, 1.33856*10^-6, 1.32219*10^-6, 1.31412*10^-6}, {1.31011*10^-6, 1.2982*10^-6, 1.2845*10^-6, 1.27485*10^-6, 1.27293*10^-6, 1.26911*10^-6, 1.26152*10^-6, 1.25587*10^-6, 1.25026*10^-6, 1.24654*10^-6, 1.24469*10^-6, 1.24099*10^-6, 1.23548*10^-6, 1.22819*10^-6, 1.22457*10^-6, 1.22276*10^-6, 1.21737*10^-6, 1.20847*10^-6, 1.2067*10^-6, 1.19791*10^-6}, {1.19095*10^-6, 1.18749*10^-6, 1.1755*10^-6, 1.16705*10^-6, 1.15703*10^-6, 1.15537*10^-6, 1.15042*10^-6, 1.14714*10^-6, 1.1455*10^-6, 1.13254*10^-6, 1.12137*10^-6, 1.11821*10^-6, 1.1135*10^-6, 1.10726*10^-6, 1.10261*10^-6, 1.09953*10^-6, 1.08582*10^-6, 1.07981*10^-6, 1.07237*10^-6, 1.06794*10^-6}, {1.06354*10^-6, 1.05772*10^-6, 1.0505*10^-6, 1.04194*10^-6, 1.03209*10^-6, 1.02929*10^-6, 1.02513*10^-6, 1.02099*10^-6, 1.01962*10^-6, 1.00067*10^-6, 9.99334*10^-7, 9.92707*10^-7, 9.87453*10^-7, 9.84841*10^-7, 9.75782*10^-7, 9.73217*10^-7, 9.68117*10^-7, 9.60541*10^-7, 9.56786*10^-7, 9.49343*10^-7}, {9.46881*10^-7, 9.43206*10^-7, 9.3111*10^-7, 9.25149*10^-7, 9.23964*10^-7, 9.14563*10^-7, 8.99589*10^-7, 8.97318*10^-7, 8.96186*10^-7, 8.89437*10^-7, 8.86091*10^-7, 8.83871*10^-7, 8.77261*10^-7, 8.73983*10^-7, 8.69642*10^-7, 8.67483*10^-7, 8.6319*10^-7, 8.51547*10^-7, 8.505*10^-7, 8.48412*10^-7}, {8.47371*10^-7, 8.41165*10^-7, 8.26947*10^-7, 8.25946*10^-7, 8.22951*10^-7, 8.19973*10^-7, 8.17011*10^-7, 8.15045*10^-7, 8.1211*10^-7, 8.11135*10^-7, 8.05322*10^-7, 8.03399*10^-7, 7.97669*10^-7, 7.9672*10^-7, 7.92*10^-7, 7.91061*10^-7, 7.83609*10^-7, 7.82685*10^-7, 7.75351*10^-7, 7.72627*10^-7}, {7.63651*10^-7, 7.56582*10^-7, 7.53085*10^-7, 7.51345*10^-7, 7.50477*10^-7, 7.48747*10^-7, 7.47883*10^-7, 7.38487*10^-7, 7.35114*10^-7, 7.30097*10^-7, 7.27608*10^-7, 7.23488*10^-7, 7.22669*10^-7, 7.21033*10^-7, 7.1859*10^-7, 7.17779*10^-7, 7.15353*10^-7, 7.11336*10^-7, 7.10537*10^-7, 7.05769*10^-7}, {7.01833*10^-7, 7.0105*10^-7, 6.97153*10^-7, 6.91752*10^-7, 6.89456*10^-7, 6.87932*10^-7, 6.85655*10^-7, 6.82637*10^-7, 6.80387*10^-7, 6.78147*10^-7, 6.7223*10^-7, 6.67842*10^-7, 6.67115*10^-7, 6.65664*10^-7, 6.60624*10^-7, 6.58482*10^-7, 6.57059*10^-7, 6.54228*10^-7, 6.50714*10^-7, 6.47923*10^-7}, {6.45842*10^-7, 6.43771*10^-7, 6.36262*10^-7, 6.34237*10^-7, 6.33564*10^-7, 6.30215*10^-7, 6.25571*10^-7, 6.24254*10^-7, 6.22286*10^-7, 6.16437*10^-7, 6.15792*10^-7, 6.12583*10^-7, 6.08132*10^-7, 6.0687*10^-7, 6.0624*10^-7, 6.03105*10^-7, 5.98757*10^-7, 5.97524*10^-7, 5.95068*10^-7, 5.89598*10^-7}, {5.88392*10^-7, 5.86591*10^-7, 5.85992*10^-7, 5.84798*10^-7, 5.83013*10^-7, 5.8242*10^-7, 5.78881*10^-7, 5.77708*10^-7, 5.71897*10^-7, 5.65607*10^-7, 5.62219*10^-7, 5.61657*10^-7, 5.60536*10^-7, 5.58861*10^-7, 5.57194*10^-7, 5.5664*10^-7, 5.54982*10^-7, 5.48968*10^-7, 5.48426*10^-7, 5.46805*10^-7}, {5.42517*10^-7, 5.40923*10^-7, 5.37754*10^-7, 5.37228*10^-7, 5.35657*10^-7, 5.32534*10^-7, 5.28413*10^-7, 5.27901*10^-7, 5.2688*10^-7, 5.25354*10^-7, 5.21817*10^-7, 5.20814*10^-7, 5.20313*10^-7, 5.15838*10^-7, 5.09961*10^-7, 5.07542*10^-7, 5.06099*10^-7, 5.05619*10^-7, 5.03231*10^-7, 5.02755*10^-7}, {5.00387*10^-7, 4.99915*10^-7, 4.97567*10^-7, 4.96166*10^-7, 4.95701*10^-7, 4.93382*10^-7, 4.9292*10^-7, 4.90621*10^-7, 4.8925*10^-7, 4.87429*10^-7, 4.80694*10^-7, 4.7848*10^-7, 4.78039*10^-7, 4.75843*10^-7, 4.74097*10^-7, 4.72794*10^-7, 4.70634*10^-7, 4.66784*10^-7, 4.65511*10^-7, 4.6298*10^-7}, {4.6047*10^-7, 4.60054*10^-7, 4.56332*10^-7, 4.55101*10^-7, 4.54284*10^-7, 4.53062*10^-7, 4.51844*10^-7, 4.48221*10^-7, 4.47822*10^-7, 4.4583*10^-7, 4.43065*10^-7, 4.41888*10^-7, 4.41105*10^-7, 4.40715*10^-7, 4.39936*10^-7, 4.35304*10^-7, 4.34921*10^-7, 4.32636*10^-7, 4.315*10^-7, 4.28492*10^-7}, {4.27*10^-7, 4.25886*10^-7, 4.24777*10^-7, 4.21474*10^-7, 4.1857*10^-7, 4.18209*10^-7, 4.17489*10^-7, 4.16412*10^-7, 4.16054*10^-7, 4.14983*10^-7, 4.13915*10^-7, 4.12146*10^-7, 4.1109*10^-7, 4.08989*10^-7, 4.06905*10^-7, 4.03808*10^-7, 4.03466*10^-7, 4.02443*10^-7, 4.01763*10^-7, 3.98724*10^-7}, {3.97385*10^-7, 3.93407*10^-7, 3.9275*10^-7, 3.92422*10^-7, 3.91767*10^-7, 3.90788*10^-7, 3.90462*10^-7, 3.88518*10^-7, 3.87873*10^-7, 3.85628*10^-7, 3.80883*10^-7, 3.7932*10^-7, 3.78388*10^-7, 3.76532*10^-7, 3.74385*10^-7, 3.73471*10^-7, 3.71954*10^-7, 3.70146*10^-7, 3.69845*10^-7, 3.69246*10^-7}, {3.68351*10^-7, 3.67161*10^-7, 3.66273*10^-7, 3.64799*10^-7, 3.64506*10^-7, 3.6392*10^-7, 3.61879*10^-7, 3.6101*10^-7, 3.60144*10^-7, 3.59568*10^-7, 3.58707*10^-7, 3.58421*10^-7, 3.56995*10^-7, 3.56711*10^-7, 3.54449*10^-7, 3.52767*10^-7, 3.51652*10^-7, 3.49163*10^-7, 3.48613*10^-7, 3.47792*10^-7}, {3.46156*10^-7, 3.45885*10^-7, 3.45073*10^-7, 3.44263*10^-7, 3.43457*10^-7, 3.3973*10^-7, 3.3894*10^-7, 3.37105*10^-7, 3.36584*10^-7, 3.35545*10^-7, 3.34253*10^-7, 3.33225*10^-7, 3.31691*10^-7, 3.29411*10^-7, 3.28907*10^-7, 3.28656*10^-7, 3.28154*10^-7, 3.25167*10^-7, 3.23688*10^-7, 3.22953*10^-7}, {3.22708*10^-7, 3.20762*10^-7, 3.20036*10^-7, 3.19313*10^-7, 3.17636*10^-7, 3.16446*10^-7, 3.14791*10^-7, 3.1432*10^-7, 3.10825*10^-7, 3.10133*10^-7, 3.09444*10^-7, 3.08756*10^-7, 3.07843*10^-7, 3.07161*10^-7, 3.06708*10^-7, 3.06481*10^-7, 3.05129*10^-7, 3.04456*10^-7, 3.04008*10^-7, 3.03785*10^-7}, {3.03116*10^-7, 3.00683*10^-7, 3.00025*10^-7, 2.99806*10^-7, 2.99368*10^-7, 2.97412*10^-7, 2.97196*10^-7, 2.96765*10^-7, 2.95476*10^-7, 2.95262*10^-7, 2.94621*10^-7, 2.94195*10^-7, 2.91448*10^-7, 2.9082*10^-7, 2.90194*10^-7, 2.89777*10^-7, 2.88947*10^-7, 2.87914*10^-7, 2.84647*10^-7, 2.83034*10^-7}, {2.82833*10^-7, 2.82232*10^-7, 2.81833*10^-7, 2.81634*10^-7, 2.81236*10^-7, 2.81037*10^-7, 2.80046*10^-7, 2.78668*10^-7, 2.78081*10^-7, 2.7769*10^-7, 2.76911*10^-7, 2.75942*10^-7, 2.75363*10^-7, 2.73447*10^-7, 2.73066*10^-7, 2.72876*10^-7, 2.72306*10^-7, 2.69487*10^-7, 2.69114*10^-7, 2.68371*10^-7}, {2.67446*10^-7, 2.66894*10^-7, 2.66343*10^-7, 2.65612*10^-7, 2.65065*10^-7, 2.63977*10^-7, 2.63615*10^-7, 2.63075*10^-7, 2.62895*10^-7, 2.62357*10^-7, 2.61999*10^-7, 2.61463*10^-7, 2.61285*10^-7, 2.60397*10^-7, 2.6022*10^-7, 2.5881*10^-7, 2.58284*10^-7, 2.56542*10^-7, 2.56196*10^-7, 2.55162*10^-7}, {2.53963*10^-7, 2.51591*10^-7, 2.51087*10^-7, 2.49418*10^-7, 2.49086*10^-7, 2.47601*10^-7, 2.46945*10^-7, 2.46455*10^-7, 2.46129*10^-7, 2.45641*10^-7, 2.44509*10^-7, 2.44026*10^-7, 2.43544*10^-7, 2.42745*10^-7, 2.42586*10^-7, 2.41791*10^-7, 2.40843*10^-7, 2.40214*10^-7, 2.39431*10^-7, 2.39275*10^-7}, {2.38496*10^-7, 2.37876*10^-7, 2.36951*10^-7, 2.36184*10^-7, 2.34358*10^-7, 2.34207*10^-7, 2.33905*10^-7, 2.33303*10^-7, 2.32852*10^-7, 2.32553*10^-7, 2.31956*10^-7, 2.30621*10^-7, 2.29885*10^-7, 2.29445*10^-7, 2.29006*10^-7, 2.28859*10^-7, 2.28422*10^-7, 2.27696*10^-7, 2.26829*10^-7, 2.26685*10^-7}, {2.25968*10^-7, 2.25539*10^-7, 2.25111*10^-7, 2.24684*10^-7, 2.24117*10^-7, 2.23693*10^-7, 2.2299*10^-7, 2.22569*10^-7, 2.22429*10^-7, 2.2201*10^-7, 2.21592*10^-7, 2.21176*10^-7, 2.20484*10^-7, 2.19933*10^-7, 2.18292*10^-7, 2.17884*10^-7, 2.164*10^-7, 2.16266*10^-7, 2.15064*10^-7, 2.14799*10^-7}, {2.14269*10^-7, 2.13609*10^-7, 2.11648*10^-7, 2.1113*10^-7, 2.0997*10^-7, 2.09714*10^-7, 2.09586*10^-7, 2.08948*10^-7, 2.08566*10^-7, 2.08439*10^-7, 2.08059*10^-7, 2.07806*10^-7, 2.06674*10^-7, 2.06174*10^-7, 2.05427*10^-7, 2.04314*10^-7, 2.03333*10^-7, 2.02967*10^-7, 2.02845*10^-7, 2.02116*10^-7}, {2.01753*10^-7, 2.0115*10^-7, 2.0103*10^-7, 2.0043*10^-7, 2.00311*10^-7, 1.99953*10^-7, 1.99358*10^-7, 1.9853*10^-7, 1.98294*10^-7, 1.96889*10^-7, 1.96772*10^-7, 1.95844*10^-7, 1.95729*10^-7, 1.95153*10^-7, 1.95038*10^-7, 1.94465*10^-7, 1.93327*10^-7, 1.931*10^-7, 1.92987*10^-7, 1.92761*10^-7}, {1.92311*10^-7, 1.91414*10^-7, 1.9108*10^-7, 1.90746*10^-7, 1.90635*10^-7, 1.89971*10^-7, 1.89091*10^-7, 1.88653*10^-7, 1.88435*10^-7, 1.88108*10^-7, 1.86487*10^-7, 1.86379*10^-7, 1.85844*10^-7, 1.85737*10^-7, 1.85418*10^-7, 1.85205*10^-7, 1.84886*10^-7, 1.84569*10^-7, 1.84147*10^-7, 1.83831*10^-7}, {1.83621*10^-7, 1.82993*10^-7, 1.8268*10^-7, 1.82265*10^-7, 1.81644*10^-7, 1.81438*10^-7, 1.80718*10^-7, 1.80105*10^-7, 1.79597*10^-7, 1.78385*10^-7, 1.78084*10^-7, 1.77485*10^-7, 1.77186*10^-7, 1.77086*10^-7, 1.75998*10^-7, 1.75605*10^-7, 1.74726*10^-7, 1.7424*10^-7, 1.73949*10^-7, 1.73274*10^-7}, {1.73082*10^-7, 1.72986*10^-7, 1.72698*10^-7, 1.72221*10^-7, 1.7184*10^-7, 1.71556*10^-7, 1.71367*10^-7, 1.71083*10^-7, 1.69677*10^-7, 1.69026*10^-7, 1.68564*10^-7, 1.68472*10^-7, 1.6792*10^-7, 1.67462*10^-7, 1.67371*10^-7, 1.66643*10^-7, 1.66552*10^-7, 1.65739*10^-7, 1.64665*10^-7, 1.63866*10^-7}, {1.63601*10^-7, 1.62897*10^-7, 1.62111*10^-7, 1.61851*10^-7, 1.61764*10^-7, 1.60986*10^-7, 1.60814*10^-7, 1.60556*10^-7, 1.6047*10^-7, 1.60043*10^-7, 1.59702*10^-7, 1.59277*10^-7, 1.59023*10^-7, 1.5877*10^-7, 1.58433*10^-7, 1.58265*10^-7, 1.58013*10^-7, 1.5793*10^-7, 1.57512*10^-7, 1.57429*10^-7}, {1.5693*10^-7, 1.56765*10^-7, 1.56517*10^-7, 1.56269*10^-7, 1.56187*10^-7, 1.55694*10^-7, 1.55531*10^-7, 1.5496*10^-7, 1.5423*10^-7, 1.54069*10^-7, 1.53827*10^-7, 1.53026*10^-7, 1.52866*10^-7, 1.52548*10^-7, 1.5231*10^-7, 1.52152*10^-7, 1.51836*10^-7, 1.51678*10^-7, 1.51128*10^-7, 1.50893*10^-7}, {1.50737*10^-7, 1.50193*10^-7, 1.49728*10^-7, 1.49574*10^-7, 1.49496*10^-7, 1.48347*10^-7, 1.48195*10^-7, 1.47286*10^-7, 1.4706*10^-7, 1.46835*10^-7, 1.46386*10^-7, 1.45939*10^-7, 1.4542*10^-7, 1.45198*10^-7, 1.45051*10^-7, 1.44977*10^-7, 1.4483*10^-7, 1.44171*10^-7, 1.43952*10^-7, 1.43516*10^-7}} N[(8^4/((8*Data)^2 + 8) )] {{4096./(8. + 64. ("2")^2), 7.0137, 2.54726, 1.3028, 0.52838, 0.378418, 0.221358, 0.177224, 0.120954, 0.0760886, 0.0665886, 0.0467452, 0.0380697, 0.034611, 0.0289707, 0.0227829, 0.0183849, 0.0171991, 0.0142567, 0.0126956}, {0.0120095, 0.0102546, 0.00929, 0.00807966, 0.00680191, 0.00627382, 0.00603254, 0.00558995, 0.0053867, 0.00501209, 0.00396798, 0.00372936, 0.00340986, 0.00331244, 0.00288274, 0.00280688, 0.00259644, 0.00240881, 0.0022948, 0.00213839}, {0.00199743, 0.00195353, 0.00175433, 0.00171816, 0.0016491, 0.00161612, 0.00143752, 0.00128697, 0.00124202, 0.00122042, 0.00117887, 0.00112043, 0.00110191, 0.00101585, 0.000968976, 0.000925268, 0.000884453, 0.000871446, 0.000834103, 0.000810525}, {0.00079911, 0.000745494, 0.000679051, 0.000661696, 0.000653267, 0.000636885, 0.000584149, 0.000563533, 0.000531521, 0.000525447, 0.000513606, 0.000496582, 0.000475168, 0.000460004, 0.000445555, 0.000436297, 0.000422942, 0.000406068, 0.000398007, 0.000382589}, {0.000364545, 0.00036109, 0.000344528, 0.000341353, 0.000332086, 0.000326116, 0.000317459, 0.000306441, 0.000301147, 0.00029855, 0.000293458, 0.000278939, 0.00026985, 0.000265471, 0.000257027, 0.000252955, 0.000247027, 0.000235779, 0.000233979, 0.000218668}, {0.000213897, 0.000206286, 0.000201912, 0.000197677, 0.000196294, 0.000192233, 0.000185739, 0.000182, 0.000178372, 0.000177187, 0.000173701, 0.000170317, 0.000168116, 0.000167032, 0.000160739, 0.000155763, 0.000154795, 0.000152887, 0.000150091, 0.00014737}, {0.00014648, 0.000141302, 0.000139638, 0.000137195, 0.000134037, 0.00013024, 0.000127317, 0.0001238, 0.000121091, 0.000119116, 0.00011719, 0.000115932, 0.000113475, 0.000111683, 0.000110512, 0.000108225, 0.000107108, 0.000103331, 0.000100754, 0.0000977874}, {0.0000973057, 0.0000949497, 0.0000944888, 0.0000935769, 0.000093126, 0.0000909193, 0.0000879593, 0.0000871401, 0.0000867348, 0.0000859327, 0.000083211, 0.0000824571, 0.000082084, 0.0000813453, 0.0000777974, 0.0000771158, 0.000075779, 0.0000741564, 0.0000728955, 0.0000722771}, {0.0000713641, 0.0000704684, 0.0000684427, 0.0000678799, 0.0000670488, 0.0000662328, 0.0000651677, 0.0000643857, 0.0000628634, 0.0000623679, 0.0000616356, 0.0000613944, 0.0000602092, 0.0000599762, 0.0000592855, 0.0000581606, 0.0000579395, 0.0000568524, 0.0000566387, 0.0000560047}, {0.0000541653, 0.0000537688, 0.0000535722, 0.0000531822, 0.0000526052, 0.0000520375, 0.0000512948, 0.0000507482, 0.0000502102, 0.0000483091, 0.0000481417, 0.0000473174, 0.000046673, 0.000045886, 0.0000454233, 0.0000449675, 0.0000443705, 0.0000434969, 0.0000432114, 0.0000427885}, {0.0000423717, 0.0000422342, 0.0000418254, 0.0000410256, 0.0000403765, 0.0000392462, 0.0000391236, 0.00003888, 0.0000385189, 0.0000383997, 0.0000380452, 0.0000378116, 0.0000376956, 0.0000374653, 0.0000367867, 0.0000366754, 0.0000363444, 0.0000345512, 0.0000342486, 0.0000339499}, {0.0000335577, 0.0000326998, 0.0000322372, 0.000031606, 0.0000314291, 0.0000313412, 0.0000311665, 0.0000309071, 0.0000305663, 0.000030398, 0.0000303144, 0.0000300656, 0.000029577, 0.000029179, 0.0000291003, 0.000028944, 0.0000288663, 0.0000287118, 0.0000284824, 0.0000280318}, {0.0000275918, 0.0000273042, 0.0000268812, 0.0000266733, 0.0000265361, 0.0000263322, 0.0000260641, 0.0000259315, 0.0000256694, 0.0000255398, 0.000025094, 0.0000249688, 0.0000247827, 0.0000247211, 0.0000245986, 0.0000244167, 0.0000243564, 0.0000241771, 0.0000238827, 0.0000233096}, {0.0000231417, 0.0000230308, 0.0000229756, 0.0000223288, 0.0000222237, 0.0000221714, 0.0000219127, 0.0000216082, 0.000021558, 0.00002131, 0.0000211146, 0.0000209698, 0.0000208265, 0.0000206847, 0.0000202677, 0.0000201316, 0.0000200415, 0.0000199967, 0.0000197312, 0.0000195139}, {0.0000192578, 0.0000190899, 0.0000187606, 0.0000184794, 0.0000183608, 0.0000182824, 0.0000182433, 0.0000181657, 0.000018127, 0.0000179356, 0.0000177099, 0.0000175986, 0.0000174884, 0.0000171639, 0.0000171284, 0.0000168483, 0.0000168138, 0.0000164409, 0.0000163414, 0.00001621}, {0.0000161126, 0.0000160481, 0.000016016, 0.0000159521, 0.0000158254, 0.0000157314, 0.0000155766, 0.0000155459, 0.0000153938, 0.0000151846, 0.0000150377, 0.0000149506, 0.0000147787, 0.0000147503, 0.0000146938, 0.0000146657, 0.0000145263, 0.0000143616, 0.0000143344, 0.0000141198}, {0.0000140933, 0.0000140143, 0.000013962, 0.0000139359, 0.0000138068, 0.0000137047, 0.0000134792, 0.0000131872, 0.0000131394, 0.0000130682, 0.0000129743, 0.0000127893, 0.0000127665, 0.000012721, 0.0000126307, 0.0000124531, 0.0000124311, 0.0000123874, 0.0000123007, 0.0000122362}, {0.0000121723, 0.0000121299, 0.0000120042, 0.0000119834, 0.0000117585, 0.0000116982, 0.0000116782, 0.0000116186, 0.0000115791, 0.0000115202, 0.0000113846, 0.0000113272, 0.0000112891, 0.0000112702, 0.0000112137, 0.0000111762, 0.0000111204, 0.00001101, 0.0000109554, 0.0000109012}, {0.0000107763, 0.000010741, 0.0000106884, 0.0000105843, 0.0000105158, 0.0000104648, 0.000010431, 0.0000102155, 0.0000100701, 9.99069*10^-6, 9.92784*10^-6, 9.89663*10^-6, 9.85009*10^-6, 9.83465*10^-6, 9.78855*10^-6, 9.62226*10^-6, 9.53334*10^-6, 9.51864*10^-6, 9.40225*10^-6, 9.34485*10^-6}, {9.31635*10^-6, 9.23163*10^-6, 9.13423*10^-6, 9.06561*10^-6, 9.05197*10^-6, 9.0248*10^-6, 8.97082*10^-6, 8.93065*10^-6, 8.89075*10^-6, 8.8643*10^-6, 8.85112*10^-6, 8.82485*10^-6, 8.78566*10^-6, 8.7338*10^-6, 8.70805*10^-6, 8.69522*10^-6, 8.65688*10^-6, 8.59356*10^-6, 8.58097*10^-6, 8.51848*10^-6}, {8.46897*10^-6, 8.44438*10^-6, 8.35914*10^-6, 8.29905*10^-6, 8.22779*10^-6, 8.216*10^-6, 8.18079*10^-6, 8.15744*10^-6, 8.1458*10^-6, 8.0536*10^-6, 7.97419*10^-6, 7.95172*10^-6, 7.9182*10^-6, 7.87382*10^-6, 7.84078*10^-6, 7.81887*10^-6, 7.72141*10^-6, 7.67868*10^-6, 7.62576*10^-6, 7.59427*10^-6}, {7.56297*10^-6, 7.52155*10^-6, 7.47024*10^-6, 7.40936*10^-6, 7.33927*10^-6, 7.31943*10^-6, 7.28982*10^-6, 7.26038*10^-6, 7.25061*10^-6, 7.11585*10^-6, 7.10637*10^-6, 7.05925*10^-6, 7.02189*10^-6, 7.00332*10^-6, 6.9389*10^-6, 6.92065*10^-6, 6.88438*10^-6, 6.83051*10^-6, 6.80381*10^-6, 6.75088*10^-6}, {6.73338*10^-6, 6.70724*10^-6, 6.62123*10^-6, 6.57884*10^-6, 6.57041*10^-6, 6.50356*10^-6, 6.39708*10^-6, 6.38093*10^-6, 6.37288*10^-6, 6.32488*10^-6, 6.30109*10^-6, 6.28531*10^-6, 6.2383*10^-6, 6.21499*10^-6, 6.18412*10^-6, 6.16877*10^-6, 6.13824*10^-6, 6.05544*10^-6, 6.048*10^-6, 6.03315*10^-6}, {6.02575*10^-6, 5.98162*10^-6, 5.88051*10^-6, 5.87339*10^-6, 5.8521*10^-6, 5.83092*10^-6, 5.80986*10^-6, 5.79588*10^-6, 5.77501*10^-6, 5.76807*10^-6, 5.72674*10^-6, 5.71306*10^-6, 5.67231*10^-6, 5.66556*10^-6, 5.632*10^-6, 5.62532*10^-6, 5.57233*10^-6, 5.56576*10^-6, 5.51361*10^-6, 5.49424*10^-6}, {5.43041*10^-6, 5.38014*10^-6, 5.35527*10^-6, 5.3429*10^-6, 5.33673*10^-6, 5.32442*10^-6, 5.31828*10^-6, 5.25146*10^-6, 5.22748*10^-6, 5.1918*10^-6, 5.1741*10^-6, 5.14481*10^-6, 5.13898*10^-6, 5.12735*10^-6, 5.10998*10^-6, 5.10421*10^-6, 5.08695*10^-6, 5.05839*10^-6, 5.05271*10^-6, 5.0188*10^-6}, {4.99081*10^-6, 4.98524*10^-6, 4.95753*10^-6, 4.91912*10^-6, 4.9028*10^-6, 4.89196*10^-6, 4.87577*10^-6, 4.85431*10^-6, 4.83831*10^-6, 4.82238*10^-6, 4.7803*10^-6, 4.7491*10^-6, 4.74393*10^-6, 4.73361*10^-6, 4.69777*10^-6, 4.68254*10^-6, 4.67242*10^-6, 4.65228*10^-6, 4.6273*10^-6, 4.60746*10^-6}, {4.59266*10^-6, 4.57793*10^-6, 4.52453*10^-6, 4.51013*10^-6, 4.50534*10^-6, 4.48153*10^-6, 4.44851*10^-6, 4.43914*10^-6, 4.42514*10^-6, 4.38355*10^-6, 4.37896*10^-6, 4.35615*10^-6, 4.3245*10^-6, 4.31552*10^-6, 4.31104*10^-6, 4.28875*10^-6, 4.25783*10^-6, 4.24906*10^-6, 4.23159*10^-6, 4.19269*10^-6}, {4.18412*10^-6, 4.17131*10^-6, 4.16706*10^-6, 4.15856*10^-6, 4.14587*10^-6, 4.14165*10^-6, 4.11648*10^-6, 4.10814*10^-6, 4.06683*10^-6, 4.02209*10^-6, 3.998*10^-6, 3.99401*10^-6, 3.98604*10^-6, 3.97413*10^-6, 3.96227*10^-6, 3.95833*10^-6, 3.94654*10^-6, 3.90377*10^-6, 3.89992*10^-6, 3.88839*10^-6}, {3.8579*10^-6, 3.84656*10^-6, 3.82403*10^-6, 3.82029*10^-6, 3.80912*10^-6, 3.78691*10^-6, 3.7576*10^-6, 3.75396*10^-6, 3.7467*10^-6, 3.73585*10^-6, 3.7107*10^-6, 3.70356*10^-6, 3.7*10^-6, 3.66818*10^-6, 3.62639*10^-6, 3.60919*10^-6, 3.59892*10^-6, 3.59551*10^-6, 3.57853*10^-6, 3.57515*10^-6}, {3.55831*10^-6, 3.55495*10^-6, 3.53826*10^-6, 3.52829*10^-6, 3.52498*10^-6, 3.50849*10^-6, 3.50521*10^-6, 3.48886*10^-6, 3.47911*10^-6, 3.46617*10^-6, 3.41827*10^-6, 3.40252*10^-6, 3.39939*10^-6, 3.38377*10^-6, 3.37136*10^-6, 3.36209*10^-6, 3.34673*10^-6, 3.31935*10^-6, 3.3103*10^-6, 3.2923*10^-6}, {3.27445*10^-6, 3.27149*10^-6, 3.24503*10^-6, 3.23628*10^-6, 3.23046*10^-6, 3.22177*10^-6, 3.21311*10^-6, 3.18735*10^-6, 3.18451*10^-6, 3.17035*10^-6, 3.15068*10^-6, 3.14231*10^-6, 3.13675*10^-6, 3.13397*10^-6, 3.12843*10^-6, 3.09549*10^-6, 3.09277*10^-6, 3.07652*10^-6, 3.06844*10^-6, 3.04705*10^-6}, {3.03644*10^-6, 3.02852*10^-6, 3.02063*10^-6, 2.99715*10^-6, 2.9765*10^-6, 2.97393*10^-6, 2.96881*10^-6, 2.96115*10^-6, 2.95861*10^-6, 2.95099*10^-6, 2.9434*10^-6, 2.93082*10^-6, 2.9233*10^-6, 2.90837*10^-6, 2.89354*10^-6, 2.87152*10^-6, 2.86909*10^-6, 2.86181*10^-6, 2.85698*10^-6, 2.83537*10^-6}, {2.82585*10^-6, 2.79756*10^-6, 2.79289*10^-6, 2.79055*10^-6, 2.7859*10^-6, 2.77894*10^-6, 2.77662*10^-6, 2.76279*10^-6, 2.75821*10^-6, 2.74224*10^-6, 2.7085*10^-6, 2.69739*10^-6, 2.69076*10^-6, 2.67756*10^-6, 2.6623*10^-6, 2.65579*10^-6, 2.645*10^-6, 2.63215*10^-6, 2.63001*10^-6, 2.62575*10^-6}, {2.61938*10^-6, 2.61092*10^-6, 2.60461*10^-6, 2.59413*10^-6, 2.59204*10^-6, 2.58787*10^-6, 2.57336*10^-6, 2.56718*10^-6, 2.56102*10^-6, 2.55693*10^-6, 2.55081*10^-6, 2.54877*10^-6, 2.53863*10^-6, 2.53661*10^-6, 2.52053*10^-6, 2.50856*10^-6, 2.50064*10^-6, 2.48294*10^-6, 2.47903*10^-6, 2.47318*10^-6}, {2.46156*10^-6, 2.45963*10^-6, 2.45385*10^-6, 2.4481*10^-6, 2.44236*10^-6, 2.41586*10^-6, 2.41024*10^-6, 2.39719*10^-6, 2.39349*10^-6, 2.3861*10^-6, 2.37691*10^-6, 2.3696*10^-6, 2.35869*10^-6, 2.34248*10^-6, 2.33889*10^-6, 2.33711*10^-6, 2.33354*10^-6, 2.3123*10^-6, 2.30178*10^-6, 2.29655*10^-6}, {2.29481*10^-6, 2.28097*10^-6, 2.27581*10^-6, 2.27067*10^-6, 2.25874*10^-6, 2.25028*10^-6, 2.23851*10^-6, 2.23517*10^-6, 2.21031*10^-6, 2.20539*10^-6, 2.20049*10^-6, 2.1956*10^-6, 2.18911*10^-6, 2.18426*10^-6, 2.18103*10^-6, 2.17942*10^-6, 2.1698*10^-6, 2.16502*10^-6, 2.16183*10^-6, 2.16025*10^-6}, {2.15549*10^-6, 2.13819*10^-6, 2.13351*10^-6, 2.13195*10^-6, 2.12884*10^-6, 2.11493*10^-6, 2.1134*10^-6, 2.11033*10^-6, 2.10116*10^-6, 2.09964*10^-6, 2.09508*10^-6, 2.09205*10^-6, 2.07252*10^-6, 2.06805*10^-6, 2.0636*10^-6, 2.06064*10^-6, 2.05474*10^-6, 2.04739*10^-6, 2.02416*10^-6, 2.01268*10^-6}, {2.01126*10^-6, 2.00699*10^-6, 2.00415*10^-6, 2.00273*10^-6, 1.9999*10^-6, 1.99848*10^-6, 1.99144*10^-6, 1.98164*10^-6, 1.97746*10^-6, 1.97468*10^-6, 1.96915*10^-6, 1.96226*10^-6, 1.95814*10^-6, 1.94451*10^-6, 1.9418*10^-6, 1.94045*10^-6, 1.9364*10^-6, 1.91635*10^-6, 1.9137*10^-6, 1.90842*10^-6}, {1.90184*10^-6, 1.89791*10^-6, 1.894*10^-6, 1.88879*10^-6, 1.88491*10^-6, 1.87717*10^-6, 1.8746*10^-6, 1.87075*10^-6, 1.86948*10^-6, 1.86565*10^-6, 1.8631*10^-6, 1.85929*10^-6, 1.85803*10^-6, 1.85171*10^-6, 1.85045*10^-6, 1.84042*10^-6, 1.83668*10^-6, 1.8243*10^-6, 1.82184*10^-6, 1.81448*10^-6}, {1.80596*10^-6, 1.78909*10^-6, 1.78551*10^-6, 1.77364*10^-6, 1.77128*10^-6, 1.76072*10^-6, 1.75605*10^-6, 1.75257*10^-6, 1.75025*10^-6, 1.74678*10^-6, 1.73873*10^-6, 1.7353*10^-6, 1.73187*10^-6, 1.72619*10^-6, 1.72505*10^-6, 1.7194*10^-6, 1.71266*10^-6, 1.70819*10^-6, 1.70262*10^-6, 1.70151*10^-6}, {1.69597*10^-6, 1.69156*10^-6, 1.68498*10^-6, 1.67953*10^-6, 1.66654*10^-6, 1.66547*10^-6, 1.66332*10^-6, 1.65904*10^-6, 1.65584*10^-6, 1.65371*10^-6, 1.64947*10^-6, 1.63997*10^-6, 1.63474*10^-6, 1.63161*10^-6, 1.62848*10^-6, 1.62745*10^-6, 1.62434*10^-6, 1.61917*10^-6, 1.61301*10^-6, 1.61199*10^-6}, {1.60688*10^-6, 1.60383*10^-6, 1.60079*10^-6, 1.59775*10^-6, 1.59372*10^-6, 1.59071*10^-6, 1.5857*10^-6, 1.58271*10^-6, 1.58172*10^-6, 1.57874*10^-6, 1.57577*10^-6, 1.5728*10^-6, 1.56788*10^-6, 1.56397*10^-6, 1.5523*10^-6, 1.5494*10^-6, 1.53885*10^-6, 1.53789*10^-6, 1.52935*10^-6, 1.52746*10^-6}, {1.52369*10^-6, 1.519*10^-6, 1.50505*10^-6, 1.50137*10^-6, 1.49312*10^-6, 1.4913*10^-6, 1.49039*10^-6, 1.48585*10^-6, 1.48314*10^-6, 1.48223*10^-6, 1.47953*10^-6, 1.47773*10^-6, 1.46968*10^-6, 1.46613*10^-6, 1.46081*10^-6, 1.4529*10^-6, 1.44592*10^-6, 1.44332*10^-6, 1.44245*10^-6, 1.43727*10^-6}, {1.43469*10^-6, 1.4304*10^-6, 1.42955*10^-6, 1.42528*10^-6, 1.42443*10^-6, 1.42188*10^-6, 1.41766*10^-6, 1.41177*10^-6, 1.41009*10^-6, 1.4001*10^-6, 1.39927*10^-6, 1.39267*10^-6, 1.39185*10^-6, 1.38775*10^-6, 1.38694*10^-6, 1.38286*10^-6, 1.37477*10^-6, 1.37316*10^-6, 1.37235*10^-6, 1.37075*10^-6}, {1.36754*10^-6, 1.36117*10^-6, 1.35879*10^-6, 1.35642*10^-6, 1.35563*10^-6, 1.3509*10^-6, 1.34465*10^-6, 1.34153*10^-6, 1.33998*10^-6, 1.33766*10^-6, 1.32613*10^-6, 1.32536*10^-6, 1.32156*10^-6, 1.3208*10^-6, 1.31852*10^-6, 1.31701*10^-6, 1.31475*10^-6, 1.31249*10^-6, 1.30949*10^-6, 1.30724*10^-6}, {1.30575*10^-6, 1.30128*10^-6, 1.29906*10^-6, 1.2961*10^-6, 1.29169*10^-6, 1.29022*10^-6, 1.28511*10^-6, 1.28075*10^-6, 1.27713*10^-6, 1.26852*10^-6, 1.26638*10^-6, 1.26211*10^-6, 1.25999*10^-6, 1.25928*10^-6, 1.25154*10^-6, 1.24875*10^-6, 1.24249*10^-6, 1.23904*10^-6, 1.23697*10^-6, 1.23217*10^-6}, {1.2308*10^-6, 1.23012*10^-6, 1.22808*10^-6, 1.22468*10^-6, 1.22198*10^-6, 1.21995*10^-6, 1.21861*10^-6, 1.21659*10^-6, 1.20659*10^-6, 1.20196*10^-6, 1.19868*10^-6, 1.19802*10^-6, 1.1941*10^-6, 1.19084*10^-6, 1.19019*10^-6, 1.18501*10^-6, 1.18437*10^-6, 1.17859*10^-6, 1.17095*10^-6, 1.16527*10^-6}, {1.16338*10^-6, 1.15838*10^-6, 1.15279*10^-6, 1.15094*10^-6, 1.15032*10^-6, 1.14479*10^-6, 1.14356*10^-6, 1.14173*10^-6, 1.14112*10^-6, 1.13808*10^-6, 1.13566*10^-6, 1.13264*10^-6, 1.13083*10^-6, 1.12903*10^-6, 1.12663*10^-6, 1.12544*10^-6, 1.12365*10^-6, 1.12306*10^-6, 1.12009*10^-6, 1.11949*10^-6}, {1.11595*10^-6, 1.11477*10^-6, 1.11301*10^-6, 1.11125*10^-6, 1.11066*10^-6, 1.10716*10^-6, 1.10599*10^-6, 1.10194*10^-6, 1.09675*10^-6, 1.0956*10^-6, 1.09388*10^-6, 1.08818*10^-6, 1.08705*10^-6, 1.08479*10^-6, 1.08309*10^-6, 1.08197*10^-6, 1.07972*10^-6, 1.0786*10^-6, 1.07469*10^-6, 1.07302*10^-6}, {1.07191*10^-6, 1.06804*10^-6, 1.06473*10^-6, 1.06363*10^-6, 1.06309*10^-6, 1.05491*10^-6, 1.05383*10^-6, 1.04737*10^-6, 1.04576*10^-6, 1.04416*10^-6, 1.04097*10^-6, 1.03779*10^-6, 1.0341*10^-6, 1.03252*10^-6, 1.03147*10^-6, 1.03095*10^-6, 1.0299*10^-6, 1.02522*10^-6, 1.02366*10^-6, 1.02056*10^-6}} N[(9^4/((9*Data)^2 + 9) )] {{6561./(9. + 81. ("2")^2), 8.89024, 3.22566, 1.64932, 0.668807, 0.478975, 0.280169, 0.224308, 0.153087, 0.0963012, 0.0842775, 0.0591625, 0.0481824, 0.0438048, 0.0366663, 0.0288347, 0.0232684, 0.0217677, 0.0180437, 0.0160679}, {0.0151995, 0.0129785, 0.0117577, 0.0102258, 0.00860868, 0.00794031, 0.00763495, 0.00707479, 0.00681754, 0.00634343, 0.00502198, 0.00471997, 0.0043156, 0.00419231, 0.00364847, 0.00355246, 0.00328612, 0.00304865, 0.00290436, 0.0027064}, {0.002528, 0.00247244, 0.00222033, 0.00217455, 0.00208714, 0.0020454, 0.00181936, 0.00162882, 0.00157193, 0.00154459, 0.00149201, 0.00141804, 0.0013946, 0.00128569, 0.00122636, 0.00117104, 0.00111939, 0.00110292, 0.00105566, 0.00102582}, {0.00101137, 0.000943516, 0.000859425, 0.000837459, 0.000826791, 0.000806057, 0.000739313, 0.000713222, 0.000672707, 0.000665019, 0.000650033, 0.000628486, 0.000601385, 0.000582193, 0.000563905, 0.000552188, 0.000535286, 0.00051393, 0.000503728, 0.000484215}, {0.000461378, 0.000457005, 0.000436044, 0.000432025, 0.000420296, 0.000412741, 0.000401783, 0.00038784, 0.000381139, 0.000377853, 0.000371408, 0.000353032, 0.000341528, 0.000335987, 0.0003253, 0.000320147, 0.000312643, 0.000298407, 0.000296129, 0.000276752}, {0.000270714, 0.000261081, 0.000255545, 0.000250184, 0.000248435, 0.000243295, 0.000235076, 0.000230343, 0.000225752, 0.000224252, 0.00021984, 0.000215558, 0.000212772, 0.000211399, 0.000203435, 0.000197137, 0.000195913, 0.000193498, 0.000189958, 0.000186515}, {0.000185388, 0.000178836, 0.000176729, 0.000173637, 0.00016964, 0.000164835, 0.000161136, 0.000156685, 0.000153256, 0.000150757, 0.000148319, 0.000146726, 0.000143617, 0.000141349, 0.000139867, 0.000136972, 0.000135558, 0.000130778, 0.000127517, 0.000123762}, {0.000123153, 0.000120171, 0.000119587, 0.000118433, 0.000117863, 0.00011507, 0.000111324, 0.000110287, 0.000109774, 0.000108759, 0.000105314, 0.00010436, 0.000103888, 0.000102953, 0.0000984624, 0.0000975996, 0.0000959078, 0.0000938542, 0.0000922584, 0.0000914757}, {0.0000903202, 0.0000891865, 0.0000866228, 0.0000859106, 0.0000848586, 0.0000838258, 0.0000824779, 0.0000814882, 0.0000795614, 0.0000789344, 0.0000780075, 0.0000777022, 0.0000762022, 0.0000759074, 0.0000750333, 0.0000736095, 0.0000733296, 0.0000719539, 0.0000716834, 0.000070881}, {0.0000685529, 0.0000680512, 0.0000678023, 0.0000673088, 0.0000665785, 0.00006586, 0.00006492, 0.0000642282, 0.0000635473, 0.0000611413, 0.0000609293, 0.000059886, 0.0000590706, 0.0000580745, 0.0000574888, 0.000056912, 0.0000561564, 0.0000550508, 0.0000546895, 0.0000541542}, {0.0000536267, 0.0000534526, 0.0000529353, 0.000051923, 0.0000511015, 0.000049671, 0.0000495158, 0.0000492075, 0.0000487505, 0.0000485996, 0.000048151, 0.0000478553, 0.0000477085, 0.000047417, 0.0000465581, 0.0000464172, 0.0000459984, 0.0000437289, 0.0000433459, 0.0000429679}, {0.0000424715, 0.0000413856, 0.0000408003, 0.0000400014, 0.0000397775, 0.0000396662, 0.0000394451, 0.0000391168, 0.0000386855, 0.0000384725, 0.0000383666, 0.0000380517, 0.0000374334, 0.0000369296, 0.0000368301, 0.0000366322, 0.0000365339, 0.0000363384, 0.000036048, 0.0000354778}, {0.0000349209, 0.0000345569, 0.0000340215, 0.0000337584, 0.0000335847, 0.0000333267, 0.0000329873, 0.0000328196, 0.0000324878, 0.0000323239, 0.0000317596, 0.0000316011, 0.0000313656, 0.0000312876, 0.0000311327, 0.0000309023, 0.0000308261, 0.0000305992, 0.0000302265, 0.0000295012}, {0.0000292887, 0.0000291483, 0.0000290785, 0.0000282599, 0.0000281269, 0.0000280607, 0.0000277333, 0.0000273479, 0.0000272844, 0.0000269704, 0.0000267231, 0.0000265399, 0.0000263585, 0.000026179, 0.0000256513, 0.000025479, 0.0000253651, 0.0000253084, 0.0000249722, 0.0000246972}, {0.0000243732, 0.0000241606, 0.0000237439, 0.000023388, 0.0000232379, 0.0000231386, 0.0000230892, 0.0000229909, 0.000022942, 0.0000226998, 0.0000224141, 0.0000222733, 0.0000221338, 0.000021723, 0.0000216781, 0.0000213236, 0.0000212799, 0.000020808, 0.000020682, 0.0000205158}, {0.0000203925, 0.0000203109, 0.0000202703, 0.0000201894, 0.0000200291, 0.0000199101, 0.0000197141, 0.0000196753, 0.0000194828, 0.000019218, 0.0000190321, 0.0000189219, 0.0000187043, 0.0000186684, 0.0000185969, 0.0000185613, 0.0000183849, 0.0000181764, 0.000018142, 0.0000178704}, {0.0000178368, 0.0000177368, 0.0000176706, 0.0000176376, 0.0000174742, 0.000017345, 0.0000170597, 0.00001669, 0.0000166295, 0.0000165395, 0.0000164206, 0.0000161865, 0.0000161576, 0.0000161, 0.0000159858, 0.0000157609, 0.0000157332, 0.0000156778, 0.0000155681, 0.0000154865}, {0.0000154055, 0.0000153519, 0.0000151928, 0.0000151665, 0.0000148818, 0.0000148056, 0.0000147803, 0.0000147048, 0.0000146548, 0.0000145803, 0.0000144086, 0.000014336, 0.0000142878, 0.0000142639, 0.0000141923, 0.0000141449, 0.0000140742, 0.0000139345, 0.0000138654, 0.0000137968}, {0.0000136387, 0.0000135941, 0.0000135275, 0.0000133958, 0.000013309, 0.0000132445, 0.0000132018, 0.000012929, 0.000012745, 0.0000126445, 0.0000125649, 0.0000125254, 0.0000124665, 0.000012447, 0.0000123886, 0.0000121782, 0.0000120656, 0.000012047, 0.0000118997, 0.0000118271}, {0.000011791, 0.0000116838, 0.0000115605, 0.0000114737, 0.0000114564, 0.000011422, 0.0000113537, 0.0000113029, 0.0000112524, 0.0000112189, 0.0000112022, 0.0000111689, 0.0000111193, 0.0000110537, 0.0000110211, 0.0000110049, 0.0000109564, 0.0000108762, 0.0000108603, 0.0000107812}, {0.0000107185, 0.0000106874, 0.0000105795, 0.0000105035, 0.0000104133, 0.0000103984, 0.0000103538, 0.0000103243, 0.0000103095, 0.0000101928, 0.0000100923, 0.0000100639, 0.0000100215, 9.9653*10^-6, 9.92349*10^-6, 9.89576*10^-6, 9.77241*10^-6, 9.71833*10^-6, 9.65135*10^-6, 9.61149*10^-6}, {9.57189*10^-6, 9.51946*10^-6, 9.45452*10^-6, 9.37747*10^-6, 9.28877*10^-6, 9.26365*10^-6, 9.22618*10^-6, 9.18892*10^-6, 9.17656*10^-6, 9.006*10^-6, 8.994*10^-6, 8.93436*10^-6, 8.88707*10^-6, 8.86357*10^-6, 8.78204*10^-6, 8.75895*10^-6, 8.71305*10^-6, 8.64487*10^-6, 8.61108*10^-6, 8.54409*10^-6}, {8.52193*10^-6, 8.48886*10^-6, 8.37999*10^-6, 8.32634*10^-6, 8.31567*10^-6, 8.23106*10^-6, 8.0963*10^-6, 8.07586*10^-6, 8.06567*10^-6, 8.00493*10^-6, 7.97482*10^-6, 7.95484*10^-6, 7.89535*10^-6, 7.86585*10^-6, 7.82678*10^-6, 7.80735*10^-6, 7.76871*10^-6, 7.66392*10^-6, 7.6545*10^-6, 7.63571*10^-6}, {7.62634*10^-6, 7.57049*10^-6, 7.44253*10^-6, 7.43351*10^-6, 7.40656*10^-6, 7.37976*10^-6, 7.3531*10^-6, 7.33541*10^-6, 7.30899*10^-6, 7.30022*10^-6, 7.2479*10^-6, 7.23059*10^-6, 7.17902*10^-6, 7.17048*10^-6, 7.128*10^-6, 7.11955*10^-6, 7.05248*10^-6, 7.04416*10^-6, 6.97816*10^-6, 6.95364*10^-6}, {6.87286*10^-6, 6.80924*10^-6, 6.77776*10^-6, 6.7621*10^-6, 6.7543*10^-6, 6.73872*10^-6, 6.73095*10^-6, 6.64638*10^-6, 6.61602*10^-6, 6.57088*10^-6, 6.54848*10^-6, 6.5114*10^-6, 6.50402*10^-6, 6.4893*10^-6, 6.46731*10^-6, 6.46001*10^-6, 6.43817*10^-6, 6.40202*10^-6, 6.39483*10^-6, 6.35192*10^-6}, {6.3165*10^-6, 6.30945*10^-6, 6.27438*10^-6, 6.22577*10^-6, 6.2051*10^-6, 6.19139*10^-6, 6.1709*10^-6, 6.14374*10^-6, 6.12348*10^-6, 6.10333*10^-6, 6.05007*10^-6, 6.01058*10^-6, 6.00403*10^-6, 5.99098*10^-6, 5.94562*10^-6, 5.92633*10^-6, 5.91353*10^-6, 5.88805*10^-6, 5.85643*10^-6, 5.83131*10^-6}, {5.81258*10^-6, 5.79394*10^-6, 5.72636*10^-6, 5.70813*10^-6, 5.70207*10^-6, 5.67193*10^-6, 5.63014*10^-6, 5.61829*10^-6, 5.60057*10^-6, 5.54793*10^-6, 5.54213*10^-6, 5.51325*10^-6, 5.47319*10^-6, 5.46183*10^-6, 5.45616*10^-6, 5.42795*10^-6, 5.38882*10^-6, 5.37771*10^-6, 5.35561*10^-6, 5.30638*10^-6}, {5.29553*10^-6, 5.27932*10^-6, 5.27393*10^-6, 5.26318*10^-6, 5.24712*10^-6, 5.24178*10^-6, 5.20992*10^-6, 5.19937*10^-6, 5.14708*10^-6, 5.09046*10^-6, 5.05997*10^-6, 5.05491*10^-6, 5.04483*10^-6, 5.02975*10^-6, 5.01475*10^-6, 5.00976*10^-6, 4.99484*10^-6, 4.94071*10^-6, 4.93583*10^-6, 4.92125*10^-6}, {4.88266*10^-6, 4.8683*10^-6, 4.83978*10^-6, 4.83506*10^-6, 4.82091*10^-6, 4.79281*10^-6, 4.75572*10^-6, 4.75111*10^-6, 4.74192*10^-6, 4.72818*10^-6, 4.69636*10^-6, 4.68732*10^-6, 4.68282*10^-6, 4.64254*10^-6, 4.58965*10^-6, 4.56788*10^-6, 4.55489*10^-6, 4.55057*10^-6, 4.52908*10^-6, 4.5248*10^-6}, {4.50348*10^-6, 4.49924*10^-6, 4.4781*10^-6, 4.4655*10^-6, 4.46131*10^-6, 4.44044*10^-6, 4.43628*10^-6, 4.41559*10^-6, 4.40325*10^-6, 4.38687*10^-6, 4.32625*10^-6, 4.30632*10^-6, 4.30235*10^-6, 4.28259*10^-6, 4.26687*10^-6, 4.25515*10^-6, 4.23571*10^-6, 4.20105*10^-6, 4.1896*10^-6, 4.16682*10^-6}, {4.14423*10^-6, 4.14048*10^-6, 4.10699*10^-6, 4.09591*10^-6, 4.08855*10^-6, 4.07755*10^-6, 4.0666*10^-6, 4.03399*10^-6, 4.03039*10^-6, 4.01247*10^-6, 3.98758*10^-6, 3.97699*10^-6, 3.96995*10^-6, 3.96643*10^-6, 3.95942*10^-6, 3.91774*10^-6, 3.91429*10^-6, 3.89372*10^-6, 3.8835*10^-6, 3.85643*10^-6}, {3.843*10^-6, 3.83298*10^-6, 3.82299*10^-6, 3.79326*10^-6, 3.76713*10^-6, 3.76388*10^-6, 3.7574*10^-6, 3.74771*10^-6, 3.74449*10^-6, 3.73484*10^-6, 3.72524*10^-6, 3.70931*10^-6, 3.69981*10^-6, 3.6809*10^-6, 3.66214*10^-6, 3.63427*10^-6, 3.63119*10^-6, 3.62198*10^-6, 3.61586*10^-6, 3.58852*10^-6}, {3.57646*10^-6, 3.54066*10^-6, 3.53475*10^-6, 3.53179*10^-6, 3.5259*10^-6, 3.51709*10^-6, 3.51416*10^-6, 3.49666*10^-6, 3.49085*10^-6, 3.47065*10^-6, 3.42794*10^-6, 3.41388*10^-6, 3.40549*10^-6, 3.38879*10^-6, 3.36947*10^-6, 3.36124*10^-6, 3.34758*10^-6, 3.33131*10^-6, 3.32861*10^-6, 3.32322*10^-6}, {3.31515*10^-6, 3.30445*10^-6, 3.29646*10^-6, 3.2832*10^-6, 3.28055*10^-6, 3.27528*10^-6, 3.25691*10^-6, 3.24909*10^-6, 3.2413*10^-6, 3.23612*10^-6, 3.22837*10^-6, 3.22579*10^-6, 3.21295*10^-6, 3.2104*10^-6, 3.19004*10^-6, 3.1749*10^-6, 3.16487*10^-6, 3.14247*10^-6, 3.13752*10^-6, 3.13012*10^-6}, {3.11541*10^-6, 3.11297*10^-6, 3.10566*10^-6, 3.09837*10^-6, 3.09111*10^-6, 3.05757*10^-6, 3.05046*10^-6, 3.03395*10^-6, 3.02926*10^-6, 3.0199*10^-6, 3.00828*10^-6, 2.99902*10^-6, 2.98522*10^-6, 2.96469*10^-6, 2.96016*10^-6, 2.9579*10^-6, 2.95338*10^-6, 2.9265*10^-6, 2.91319*10^-6, 2.90658*10^-6}, {2.90437*10^-6, 2.88686*10^-6, 2.88033*10^-6, 2.87382*10^-6, 2.85872*10^-6, 2.84801*10^-6, 2.83312*10^-6, 2.82888*10^-6, 2.79743*10^-6, 2.7912*10^-6, 2.78499*10^-6, 2.77881*10^-6, 2.77059*10^-6, 2.76445*10^-6, 2.76037*10^-6, 2.75833*10^-6, 2.74616*10^-6, 2.7401*10^-6, 2.73607*10^-6, 2.73406*10^-6}, {2.72804*10^-6, 2.70615*10^-6, 2.70022*10^-6, 2.69825*10^-6, 2.69432*10^-6, 2.67671*10^-6, 2.67477*10^-6, 2.67088*10^-6, 2.65928*10^-6, 2.65735*10^-6, 2.65159*10^-6, 2.64775*10^-6, 2.62304*10^-6, 2.61738*10^-6, 2.61174*10^-6, 2.608*10^-6, 2.60052*10^-6, 2.59123*10^-6, 2.56182*10^-6, 2.5473*10^-6}, {2.5455*10^-6, 2.54009*10^-6, 2.5365*10^-6, 2.5347*10^-6, 2.53112*10^-6, 2.52933*10^-6, 2.52042*10^-6, 2.50801*10^-6, 2.50273*10^-6, 2.49921*10^-6, 2.4922*10^-6, 2.48348*10^-6, 2.47827*10^-6, 2.46102*10^-6, 2.45759*10^-6, 2.45588*10^-6, 2.45076*10^-6, 2.42538*10^-6, 2.42203*10^-6, 2.41534*10^-6}, {2.40702*10^-6, 2.40205*10^-6, 2.39709*10^-6, 2.39051*10^-6, 2.38559*10^-6, 2.37579*10^-6, 2.37254*10^-6, 2.36767*10^-6, 2.36605*10^-6, 2.36121*10^-6, 2.35799*10^-6, 2.35317*10^-6, 2.35156*10^-6, 2.34357*10^-6, 2.34198*10^-6, 2.32929*10^-6, 2.32455*10^-6, 2.30888*10^-6, 2.30577*10^-6, 2.29646*10^-6}, {2.28567*10^-6, 2.26432*10^-6, 2.25978*10^-6, 2.24476*10^-6, 2.24177*10^-6, 2.22841*10^-6, 2.2225*10^-6, 2.21809*10^-6, 2.21516*10^-6, 2.21077*10^-6, 2.20058*10^-6, 2.19623*10^-6, 2.1919*10^-6, 2.18471*10^-6, 2.18327*10^-6, 2.17612*10^-6, 2.16759*10^-6, 2.16192*10^-6, 2.15488*10^-6, 2.15347*10^-6}, {2.14647*10^-6, 2.14089*10^-6, 2.13256*10^-6, 2.12565*10^-6, 2.10922*10^-6, 2.10786*10^-6, 2.10514*10^-6, 2.09972*10^-6, 2.09567*10^-6, 2.09298*10^-6, 2.08761*10^-6, 2.07559*10^-6, 2.06896*10^-6, 2.065*10^-6, 2.06105*10^-6, 2.05974*10^-6, 2.0558*10^-6, 2.04926*10^-6, 2.04146*10^-6, 2.04017*10^-6}, {2.03371*10^-6, 2.02985*10^-6, 2.026*10^-6, 2.02216*10^-6, 2.01705*10^-6, 2.01324*10^-6, 2.00691*10^-6, 2.00312*10^-6, 2.00186*10^-6, 1.99809*10^-6, 1.99433*10^-6, 1.99058*10^-6, 1.98435*10^-6, 1.97939*10^-6, 1.96463*10^-6, 1.96096*10^-6, 1.9476*10^-6, 1.94639*10^-6, 1.93558*10^-6, 1.93319*10^-6}, {1.92842*10^-6, 1.92248*10^-6, 1.90483*10^-6, 1.90017*10^-6, 1.88973*10^-6, 1.88743*10^-6, 1.88627*10^-6, 1.88053*10^-6, 1.8771*10^-6, 1.87595*10^-6, 1.87253*10^-6, 1.87026*10^-6, 1.86007*10^-6, 1.85557*10^-6, 1.84884*10^-6, 1.83883*10^-6, 1.83*10^-6, 1.8267*10^-6, 1.8256*10^-6, 1.81904*10^-6}, {1.81578*10^-6, 1.81035*10^-6, 1.80927*10^-6, 1.80387*10^-6, 1.8028*10^-6, 1.79957*10^-6, 1.79422*10^-6, 1.78677*10^-6, 1.78465*10^-6, 1.772*10^-6, 1.77095*10^-6, 1.7626*10^-6, 1.76156*10^-6, 1.75638*10^-6, 1.75534*10^-6, 1.75019*10^-6, 1.73994*10^-6, 1.7379*10^-6, 1.73688*10^-6, 1.73485*10^-6}, {1.7308*10^-6, 1.72273*10^-6, 1.71972*10^-6, 1.71671*10^-6, 1.71571*10^-6, 1.70974*10^-6, 1.70182*10^-6, 1.69788*10^-6, 1.69591*10^-6, 1.69297*10^-6, 1.67838*10^-6, 1.67741*10^-6, 1.6726*10^-6, 1.67164*10^-6, 1.66876*10^-6, 1.66684*10^-6, 1.66398*10^-6, 1.66112*10^-6, 1.65732*10^-6, 1.65448*10^-6}, {1.65259*10^-6, 1.64694*10^-6, 1.64412*10^-6, 1.64038*10^-6, 1.63479*10^-6, 1.63294*10^-6, 1.62647*10^-6, 1.62095*10^-6, 1.61637*10^-6, 1.60547*10^-6, 1.60276*10^-6, 1.59736*10^-6, 1.59467*10^-6, 1.59378*10^-6, 1.58399*10^-6, 1.58045*10^-6, 1.57253*10^-6, 1.56816*10^-6, 1.56554*10^-6, 1.55947*10^-6}, {1.55774*10^-6, 1.55687*10^-6, 1.55429*10^-6, 1.54999*10^-6, 1.54656*10^-6, 1.544*10^-6, 1.5423*10^-6, 1.53975*10^-6, 1.52709*10^-6, 1.52124*10^-6, 1.51707*10^-6, 1.51624*10^-6, 1.51128*10^-6, 1.50716*10^-6, 1.50634*10^-6, 1.49978*10^-6, 1.49897*10^-6, 1.49165*10^-6, 1.48198*10^-6, 1.47479*10^-6}, {1.47241*10^-6, 1.46608*10^-6, 1.459*10^-6, 1.45666*10^-6, 1.45587*10^-6, 1.44887*10^-6, 1.44732*10^-6, 1.44501*10^-6, 1.44423*10^-6, 1.44038*10^-6, 1.43732*10^-6, 1.43349*10^-6, 1.43121*10^-6, 1.42893*10^-6, 1.4259*10^-6, 1.42438*10^-6, 1.42212*10^-6, 1.42137*10^-6, 1.41761*10^-6, 1.41686*10^-6}, {1.41237*10^-6, 1.41088*10^-6, 1.40865*10^-6, 1.40642*10^-6, 1.40568*10^-6, 1.40125*10^-6, 1.39977*10^-6, 1.39464*10^-6, 1.38807*10^-6, 1.38662*10^-6, 1.38444*10^-6, 1.37723*10^-6, 1.3758*10^-6, 1.37293*10^-6, 1.37079*10^-6, 1.36937*10^-6, 1.36652*10^-6, 1.3651*10^-6, 1.36015*10^-6, 1.35804*10^-6}, {1.35664*10^-6, 1.35173*10^-6, 1.34755*10^-6, 1.34616*10^-6, 1.34547*10^-6, 1.33512*10^-6, 1.33375*10^-6, 1.32558*10^-6, 1.32354*10^-6, 1.32152*10^-6, 1.31747*10^-6, 1.31345*10^-6, 1.30878*10^-6, 1.30679*10^-6, 1.30546*10^-6, 1.3048*10^-6, 1.30347*10^-6, 1.29754*10^-6, 1.29557*10^-6, 1.29165*10^-6}} N[(11^4/((11*Data)^2 + 11) )] {{14641./(11. + 121. ("2")^2), 13.31, 4.82246, 2.46481, 0.999249, 0.715591, 0.418553, 0.335096, 0.228694, 0.143861, 0.125899, 0.0883798, 0.0719771, 0.0654376, 0.0547737, 0.0430744, 0.0347592, 0.0325173, 0.0269542, 0.0240027}, {0.0227056, 0.0193876, 0.017564, 0.0152757, 0.0128599, 0.0118615, 0.0114053, 0.0105685, 0.0101842, 0.00947601, 0.00750197, 0.00705083, 0.00644677, 0.00626259, 0.00545018, 0.00530676, 0.0049089, 0.00455416, 0.00433861, 0.00404289}, {0.0037764, 0.00369341, 0.00331679, 0.0032484, 0.00311783, 0.00305547, 0.00271781, 0.00243318, 0.00234819, 0.00230735, 0.00222881, 0.00211831, 0.00208329, 0.0019206, 0.00183197, 0.00174934, 0.00167217, 0.00164758, 0.00157698, 0.0015324}, {0.00151082, 0.00140945, 0.00128383, 0.00125102, 0.00123508, 0.00120411, 0.00110441, 0.00106543, 0.00100491, 0.000993423, 0.000971037, 0.00093885, 0.000898365, 0.000869696, 0.000842377, 0.000824874, 0.000799624, 0.000767722, 0.000752482, 0.000723333}, {0.000689219, 0.000682686, 0.000651374, 0.000645371, 0.00062785, 0.000616563, 0.000600195, 0.000579366, 0.000569355, 0.000564447, 0.000554819, 0.000527368, 0.000510185, 0.000501906, 0.000485942, 0.000478244, 0.000467035, 0.000445769, 0.000442366, 0.000413419}, {0.000404399, 0.000390009, 0.000381741, 0.000373732, 0.000371119, 0.000363441, 0.000351163, 0.000344093, 0.000337234, 0.000334993, 0.000328404, 0.000322006, 0.000317845, 0.000315794, 0.000303897, 0.000294489, 0.00029266, 0.000289052, 0.000283765, 0.000278621}, {0.000276938, 0.00026715, 0.000264002, 0.000259384, 0.000253413, 0.000246235, 0.000240709, 0.00023406, 0.000228937, 0.000225205, 0.000221563, 0.000219183, 0.000214539, 0.000211151, 0.000208937, 0.000204613, 0.000202501, 0.00019536, 0.000190488, 0.000184879}, {0.000183969, 0.000179514, 0.000178643, 0.000176919, 0.000176066, 0.000171894, 0.000166298, 0.000164749, 0.000163983, 0.000162466, 0.000157321, 0.000155895, 0.00015519, 0.000153794, 0.000147086, 0.000145797, 0.00014327, 0.000140202, 0.000137818, 0.000136649}, {0.000134923, 0.000133229, 0.000129399, 0.000128336, 0.000126764, 0.000125221, 0.000123208, 0.000121729, 0.000118851, 0.000117914, 0.00011653, 0.000116074, 0.000113833, 0.000113393, 0.000112087, 0.00010996, 0.000109542, 0.000107487, 0.000107083, 0.000105884}, {0.000102406, 0.000101657, 0.000101285, 0.000100548, 0.0000994568, 0.0000983835, 0.0000969793, 0.0000959458, 0.0000949287, 0.0000913345, 0.0000910179, 0.0000894594, 0.0000882412, 0.0000867532, 0.0000858784, 0.0000850167, 0.0000838879, 0.0000822363, 0.0000816966, 0.000080897}, {0.000080109, 0.000079849, 0.0000790762, 0.000077564, 0.0000763368, 0.0000741999, 0.0000739681, 0.0000735076, 0.0000728248, 0.0000725994, 0.0000719292, 0.0000714876, 0.0000712683, 0.0000708328, 0.0000695498, 0.0000693393, 0.0000687137, 0.0000653234, 0.0000647513, 0.0000641866}, {0.0000634451, 0.000061823, 0.0000609485, 0.0000597552, 0.0000594207, 0.0000592544, 0.0000589241, 0.0000584338, 0.0000577894, 0.0000574712, 0.0000573131, 0.0000568427, 0.0000559191, 0.0000551665, 0.0000550178, 0.0000547222, 0.0000545753, 0.0000542832, 0.0000538496, 0.0000529976}, {0.0000521658, 0.000051622, 0.0000508222, 0.0000504293, 0.0000501698, 0.0000497844, 0.0000492774, 0.0000490267, 0.0000485312, 0.0000482863, 0.0000474434, 0.0000472066, 0.0000468547, 0.0000467383, 0.0000465068, 0.0000461627, 0.0000460489, 0.0000457099, 0.0000451531, 0.0000440697}, {0.0000437523, 0.0000435426, 0.0000434383, 0.0000422155, 0.0000420167, 0.0000419178, 0.0000414287, 0.000040853, 0.0000407582, 0.0000402892, 0.0000399198, 0.000039646, 0.0000393751, 0.0000391069, 0.0000383187, 0.0000380612, 0.000037891, 0.0000378063, 0.0000373042, 0.0000368934}, {0.0000364093, 0.0000360918, 0.0000354692, 0.0000349376, 0.0000347134, 0.0000345651, 0.0000344913, 0.0000343445, 0.0000342714, 0.0000339095, 0.0000334828, 0.0000332724, 0.000033064, 0.0000324505, 0.0000323833, 0.0000318538, 0.0000317886, 0.0000310836, 0.0000308954, 0.0000306471}, {0.0000304629, 0.000030341, 0.0000302803, 0.0000301595, 0.00002992, 0.0000297422, 0.0000294495, 0.0000293915, 0.0000291039, 0.0000287083, 0.0000284307, 0.000028266, 0.000027941, 0.0000278873, 0.0000277805, 0.0000277274, 0.0000274638, 0.0000271524, 0.0000271011, 0.0000266953}, {0.0000266452, 0.0000264958, 0.0000263968, 0.0000263476, 0.0000261034, 0.0000259105, 0.0000254842, 0.000024932, 0.0000248417, 0.0000247071, 0.0000245295, 0.0000241798, 0.0000241367, 0.0000240506, 0.00002388, 0.0000235441, 0.0000235026, 0.00002342, 0.000023256, 0.0000231341}, {0.0000230132, 0.0000229331, 0.0000226954, 0.0000226561, 0.0000222308, 0.0000221169, 0.0000220792, 0.0000219664, 0.0000218917, 0.0000217804, 0.000021524, 0.0000214154, 0.0000213435, 0.0000213077, 0.0000212008, 0.00002113, 0.0000210245, 0.0000208157, 0.0000207125, 0.00002061}, {0.0000203739, 0.0000203072, 0.0000202077, 0.000020011, 0.0000198814, 0.000019785, 0.0000197212, 0.0000193136, 0.0000190388, 0.0000188887, 0.0000187698, 0.0000187108, 0.0000186228, 0.0000185936, 0.0000185065, 0.0000181921, 0.000018024, 0.0000179962, 0.0000177761, 0.0000176676}, {0.0000176137, 0.0000174535, 0.0000172694, 0.0000171397, 0.0000171139, 0.0000170625, 0.0000169605, 0.0000168845, 0.0000168091, 0.0000167591, 0.0000167342, 0.0000166845, 0.0000166104, 0.0000165123, 0.0000164637, 0.0000164394, 0.0000163669, 0.0000162472, 0.0000162234, 0.0000161052}, {0.0000160116, 0.0000159651, 0.000015804, 0.0000156904, 0.0000155557, 0.0000155334, 0.0000154668, 0.0000154227, 0.0000154007, 0.0000152263, 0.0000150762, 0.0000150337, 0.0000149703, 0.0000148864, 0.000014824, 0.0000147826, 0.0000145983, 0.0000145175, 0.0000144174, 0.0000143579}, {0.0000142987, 0.0000142204, 0.0000141234, 0.0000140083, 0.0000138758, 0.0000138383, 0.0000137823, 0.0000137267, 0.0000137082, 0.0000134534, 0.0000134355, 0.0000133464, 0.0000132758, 0.0000132406, 0.0000131189, 0.0000130844, 0.0000130158, 0.0000129139, 0.0000128635, 0.0000127634}, {0.0000127303, 0.0000126809, 0.0000125183, 0.0000124381, 0.0000124222, 0.0000122958, 0.0000120945, 0.0000120639, 0.0000120487, 0.000011958, 0.000011913, 0.0000118832, 0.0000117943, 0.0000117502, 0.0000116919, 0.0000116628, 0.0000116051, 0.0000114486, 0.0000114345, 0.0000114064}, {0.0000113924, 0.000011309, 0.0000111178, 0.0000111044, 0.0000110641, 0.0000110241, 0.0000109843, 0.0000109578, 0.0000109184, 0.0000109053, 0.0000108271, 0.0000108012, 0.0000107242, 0.0000107115, 0.000010648, 0.0000106354, 0.0000105352, 0.0000105228, 0.0000104242, 0.0000103875}, {0.0000102669, 0.0000101718, 0.0000101248, 0.0000101014, 0.0000100897, 0.0000100665, 0.0000100549, 9.92855*10^-6, 9.8832*10^-6, 9.81575*10^-6, 9.78229*10^-6, 9.7269*10^-6, 9.71588*10^-6, 9.69389*10^-6, 9.66105*10^-6, 9.65014*10^-6, 9.61752*10^-6, 9.56352*10^-6, 9.55277*10^-6, 9.48868*10^-6}, {9.43576*10^-6, 9.42523*10^-6, 9.37283*10^-6, 9.30022*10^-6, 9.26935*10^-6, 9.24886*10^-6, 9.21825*10^-6, 9.17768*10^-6, 9.14742*10^-6, 9.11732*10^-6, 9.03775*10^-6, 8.97876*10^-6, 8.96899*10^-6, 8.94949*10^-6, 8.88172*10^-6, 8.85292*10^-6, 8.83379*10^-6, 8.79573*10^-6, 8.74849*10^-6, 8.71097*10^-6}, {8.68299*10^-6, 8.65515*10^-6, 8.55419*10^-6, 8.52696*10^-6, 8.51791*10^-6, 8.47289*10^-6, 8.41046*10^-6, 8.39275*10^-6, 8.36629*10^-6, 8.28765*10^-6, 8.27898*10^-6, 8.23584*10^-6, 8.176*10^-6, 8.15903*10^-6, 8.15056*10^-6, 8.10841*10^-6, 8.04996*10^-6, 8.03338*10^-6, 8.00036*10^-6, 7.92681*10^-6}, {7.91061*10^-6, 7.88639*10^-6, 7.87834*10^-6, 7.86228*10^-6, 7.83829*10^-6, 7.83032*10^-6, 7.78273*10^-6, 7.76696*10^-6, 7.68884*10^-6, 7.60427*10^-6, 7.55872*10^-6, 7.55117*10^-6, 7.5361*10^-6, 7.51358*10^-6, 7.49116*10^-6, 7.48371*10^-6, 7.46143*10^-6, 7.38057*10^-6, 7.37328*10^-6, 7.35149*10^-6}, {7.29385*10^-6, 7.2724*10^-6, 7.2298*10^-6, 7.22274*10^-6, 7.20161*10^-6, 7.15963*10^-6, 7.10422*10^-6, 7.09734*10^-6, 7.08361*10^-6, 7.06309*10^-6, 7.01555*10^-6, 7.00205*10^-6, 6.99532*10^-6, 6.93516*10^-6, 6.85615*10^-6, 6.82362*10^-6, 6.80422*10^-6, 6.79777*10^-6, 6.76566*10^-6, 6.75926*10^-6}, {6.72742*10^-6, 6.72108*10^-6, 6.68951*10^-6, 6.67068*10^-6, 6.66442*10^-6, 6.63325*10^-6, 6.62704*10^-6, 6.59613*10^-6, 6.57769*10^-6, 6.55322*10^-6, 6.46266*10^-6, 6.4329*10^-6, 6.42697*10^-6, 6.39744*10^-6, 6.37397*10^-6, 6.35645*10^-6, 6.32742*10^-6, 6.27565*10^-6, 6.25853*10^-6, 6.22451*10^-6}, {6.19077*10^-6, 6.18517*10^-6, 6.13513*10^-6, 6.11859*10^-6, 6.10759*10^-6, 6.09116*10^-6, 6.07479*10^-6, 6.02609*10^-6, 6.02071*10^-6, 5.99394*10^-6, 5.95676*10^-6, 5.94093*10^-6, 5.93042*10^-6, 5.92517*10^-6, 5.91469*10^-6, 5.85242*10^-6, 5.84727*10^-6, 5.81655*10^-6, 5.80127*10^-6, 5.76084*10^-6}, {5.74078*10^-6, 5.7258*10^-6, 5.71089*10^-6, 5.66648*10^-6, 5.62744*10^-6, 5.62259*10^-6, 5.61291*10^-6, 5.59843*10^-6, 5.59362*10^-6, 5.57921*10^-6, 5.56486*10^-6, 5.54107*10^-6, 5.52687*10^-6, 5.49863*10^-6, 5.47061*10^-6, 5.42897*10^-6, 5.42437*10^-6, 5.41062*10^-6, 5.40147*10^-6, 5.36062*10^-6}, {5.34262*10^-6, 5.28913*10^-6, 5.2803*10^-6, 5.27589*10^-6, 5.26709*10^-6, 5.25392*10^-6, 5.24955*10^-6, 5.2234*10^-6, 5.21473*10^-6, 5.18455*10^-6, 5.12076*10^-6, 5.09975*10^-6, 5.08721*10^-6, 5.06227*10^-6, 5.0334*10^-6, 5.02111*10^-6, 5.00071*10^-6, 4.9764*10^-6, 4.97237*10^-6, 4.96431*10^-6}, {4.95227*10^-6, 4.93628*10^-6, 4.92433*10^-6, 4.90453*10^-6, 4.90058*10^-6, 4.8927*10^-6, 4.86527*10^-6, 4.85358*10^-6, 4.84194*10^-6, 4.8342*10^-6, 4.82262*10^-6, 4.81877*10^-6, 4.7996*10^-6, 4.79578*10^-6, 4.76537*10^-6, 4.74275*10^-6, 4.72777*10^-6, 4.6943*10^-6, 4.68691*10^-6, 4.67586*10^-6}, {4.65388*10^-6, 4.65023*10^-6, 4.63931*10^-6, 4.62843*10^-6, 4.61759*10^-6, 4.56748*10^-6, 4.55685*10^-6, 4.53219*10^-6, 4.52518*10^-6, 4.51122*10^-6, 4.49384*10^-6, 4.48002*10^-6, 4.4594*10^-6, 4.42874*10^-6, 4.42197*10^-6, 4.41859*10^-6, 4.41184*10^-6, 4.37168*10^-6, 4.35181*10^-6, 4.34192*10^-6}, {4.33863*10^-6, 4.31246*10^-6, 4.30271*10^-6, 4.29299*10^-6, 4.27044*10^-6, 4.25444*10^-6, 4.23219*10^-6, 4.22586*10^-6, 4.17888*10^-6, 4.16957*10^-6, 4.1603*10^-6, 4.15106*10^-6, 4.13878*10^-6, 4.12961*10^-6, 4.12352*10^-6, 4.12047*10^-6, 4.10228*10^-6, 4.09324*10^-6, 4.08722*10^-6, 4.08422*10^-6}, {4.07523*10^-6, 4.04252*10^-6, 4.03367*10^-6, 4.03072*10^-6, 4.02484*10^-6, 3.99855*10^-6, 3.99564*10^-6, 3.98984*10^-6, 3.97251*10^-6, 3.96963*10^-6, 3.96101*10^-6, 3.95529*10^-6, 3.91836*10^-6, 3.90991*10^-6, 3.90149*10^-6, 3.8959*10^-6, 3.88473*10^-6, 3.87085*10^-6, 3.82692*10^-6, 3.80523*10^-6}, {3.80253*10^-6, 3.79446*10^-6, 3.78909*10^-6, 3.78641*10^-6, 3.78106*10^-6, 3.77838*10^-6, 3.76506*10^-6, 3.74654*10^-6, 3.73864*10^-6, 3.73339*10^-6, 3.72292*10^-6, 3.70989*10^-6, 3.70211*10^-6, 3.67634*10^-6, 3.67122*10^-6, 3.66866*10^-6, 3.66101*10^-6, 3.6231*10^-6, 3.61809*10^-6, 3.6081*10^-6}, {3.59567*10^-6, 3.58824*10^-6, 3.58084*10^-6, 3.571*10^-6, 3.56365*10^-6, 3.54902*10^-6, 3.54416*10^-6, 3.53689*10^-6, 3.53448*10^-6, 3.52724*10^-6, 3.52243*10^-6, 3.51523*10^-6, 3.51283*10^-6, 3.50089*10^-6, 3.49851*10^-6, 3.47955*10^-6, 3.47248*10^-6, 3.44907*10^-6, 3.44442*10^-6, 3.43051*10^-6}, {3.41439*10^-6, 3.3825*10^-6, 3.37572*10^-6, 3.35328*10^-6, 3.34882*10^-6, 3.32885*10^-6, 3.32004*10^-6, 3.31345*10^-6, 3.30907*10^-6, 3.30251*10^-6, 3.28729*10^-6, 3.28079*10^-6, 3.27432*10^-6, 3.26357*10^-6, 3.26143*10^-6, 3.25075*10^-6, 3.238*10^-6, 3.22954*10^-6, 3.21901*10^-6, 3.21691*10^-6}, {3.20645*10^-6, 3.19811*10^-6, 3.18567*10^-6, 3.17536*10^-6, 3.15081*10^-6, 3.14878*10^-6, 3.14472*10^-6, 3.13662*10^-6, 3.13057*10^-6, 3.12655*10^-6, 3.11852*10^-6, 3.10058*10^-6, 3.09067*10^-6, 3.08475*10^-6, 3.07885*10^-6, 3.07689*10^-6, 3.07101*10^-6, 3.06125*10^-6, 3.04959*10^-6, 3.04766*10^-6}, {3.03801*10^-6, 3.03224*10^-6, 3.02649*10^-6, 3.02075*10^-6, 3.01313*10^-6, 3.00743*10^-6, 2.99797*10^-6, 2.99232*10^-6, 2.99044*10^-6, 2.9848*10^-6, 2.97919*10^-6, 2.97358*10^-6, 2.96428*10^-6, 2.95687*10^-6, 2.93481*10^-6, 2.92933*10^-6, 2.90938*10^-6, 2.90758*10^-6, 2.89142*10^-6, 2.88785*10^-6}, {2.88072*10^-6, 2.87185*10^-6, 2.84549*10^-6, 2.83852*10^-6, 2.82293*10^-6, 2.81949*10^-6, 2.81777*10^-6, 2.80919*10^-6, 2.80406*10^-6, 2.80235*10^-6, 2.79724*10^-6, 2.79384*10^-6, 2.77862*10^-6, 2.77189*10^-6, 2.76185*10^-6, 2.74689*10^-6, 2.7337*10^-6, 2.72877*10^-6, 2.72713*10^-6, 2.71733*10^-6}, {2.71245*10^-6, 2.70435*10^-6, 2.70273*10^-6, 2.69467*10^-6, 2.69307*10^-6, 2.68825*10^-6, 2.68025*10^-6, 2.66912*10^-6, 2.66595*10^-6, 2.64706*10^-6, 2.64549*10^-6, 2.63302*10^-6, 2.63147*10^-6, 2.62372*10^-6, 2.62218*10^-6, 2.61447*10^-6, 2.59917*10^-6, 2.59612*10^-6, 2.5946*10^-6, 2.59157*10^-6}, {2.58551*10^-6, 2.57346*10^-6, 2.56896*10^-6, 2.56447*10^-6, 2.56298*10^-6, 2.55405*10^-6, 2.54222*10^-6, 2.53633*10^-6, 2.5334*10^-6, 2.52901*10^-6, 2.50721*10^-6, 2.50577*10^-6, 2.49857*10^-6, 2.49714*10^-6, 2.49284*10^-6, 2.48998*10^-6, 2.4857*10^-6, 2.48143*10^-6, 2.47575*10^-6, 2.47151*10^-6}, {2.46868*10^-6, 2.46024*10^-6, 2.45604*10^-6, 2.45045*10^-6, 2.4421*10^-6, 2.43933*10^-6, 2.42966*10^-6, 2.42142*10^-6, 2.41458*10^-6, 2.39829*10^-6, 2.39424*10^-6, 2.38618*10^-6, 2.38217*10^-6, 2.38083*10^-6, 2.3662*10^-6, 2.36092*10^-6, 2.34909*10^-6, 2.34256*10^-6, 2.33865*10^-6, 2.32957*10^-6}, {2.32699*10^-6, 2.3257*10^-6, 2.32183*10^-6, 2.31542*10^-6, 2.3103*10^-6, 2.30647*10^-6, 2.30393*10^-6, 2.30012*10^-6, 2.28121*10^-6, 2.27246*10^-6, 2.26625*10^-6, 2.26501*10^-6, 2.25759*10^-6, 2.25143*10^-6, 2.2502*10^-6, 2.24042*10^-6, 2.2392*10^-6, 2.22827*10^-6, 2.21383*10^-6, 2.20309*10^-6}, {2.19952*10^-6, 2.19007*10^-6, 2.1795*10^-6, 2.17599*10^-6, 2.17482*10^-6, 2.16437*10^-6, 2.16205*10^-6, 2.15859*10^-6, 2.15743*10^-6, 2.15168*10^-6, 2.1471*10^-6, 2.14139*10^-6, 2.13798*10^-6, 2.13457*10^-6, 2.13004*10^-6, 2.12778*10^-6, 2.1244*10^-6, 2.12328*10^-6, 2.11766*10^-6, 2.11654*10^-6}, {2.10984*10^-6, 2.10761*10^-6, 2.10428*10^-6, 2.10095*10^-6, 2.09985*10^-6, 2.09322*10^-6, 2.09102*10^-6, 2.08335*10^-6, 2.07354*10^-6, 2.07137*10^-6, 2.06812*10^-6, 2.05735*10^-6, 2.0552*10^-6, 2.05093*10^-6, 2.04772*10^-6, 2.0456*10^-6, 2.04135*10^-6, 2.03923*10^-6, 2.03183*10^-6, 2.02868*10^-6}, {2.02658*10^-6, 2.01926*10^-6, 2.01301*10^-6, 2.01093*10^-6, 2.0099*10^-6, 1.99444*10^-6, 1.9924*10^-6, 1.98018*10^-6, 1.97715*10^-6, 1.97412*10^-6, 1.96808*10^-6, 1.96207*10^-6, 1.95509*10^-6, 1.95211*10^-6, 1.95013*10^-6, 1.94914*10^-6, 1.94716*10^-6, 1.9383*10^-6, 1.93536*10^-6, 1.9295*10^-6}} In[14]:= N[(Data^4/((p*Data)^2 + Data) )] Out[14]= {{("2")^4/("2" + 9. ("2")^2), 0.964286, 2.71739, 5.35938, 13.31, 18.6186, 31.9026, 39.8779, 58.4952, 93.0878, 106.396, 151.656, 186.273, 204.915, 244.866, 311.458, 386.051, 412.693, 497.952, 559.236}, {591.211, 692.471, 764.421, 879.014, 1044.25, 1132.2, 1177.51, 1270.79, 1318.77, 1417.38, 1790.54, 1905.16, 2083.75, 2145.06, 2464.94, 2531.58, 2736.84, 2950.1, 3096.72, 3323.31}, {3557.9, 3637.88, 4051.09, 4136.4, 4309.68, 4397.66, 4944.17, 5522.69, 5722.64, 5823.95, 6029.24, 6343.83, 6450.47, 6997.01, 7335.61, 7682.2, 8036.79, 8156.77, 8522.03, 8769.98}, {8895.29, 9535.16, 10468.3, 10742.9, 10881.6, 11161.5, 12169.4, 12614.6, 13374.5, 13529.1, 13841.1, 14315.7, 14960.9, 15454.2, 15955.4, 16294.1, 16808.6, 17507.2, 17861.8, 18581.7}, {19501.6, 19688.2, 20634.8, 20826.8, 21408., 21800., 22394.6, 23199.8, 23607.8, 23813.1, 24226.3, 25487.5, 26346.1, 26780.7, 27660.6, 28105.9, 28780.5, 30153.7, 30385.7, 32513.4}, {33238.7, 34465.2, 35211.8, 35966.4, 36219.7, 36985., 38278.2, 39064.8, 39859.4, 40126., 40931.3, 41744.5, 42291.2, 42565.8, 44232.3, 45645.5, 45930.8, 46504.1, 47370.7, 48245.3}, {48538.6, 50317.1, 50917.1, 51823.7, 53044.9, 54591.5, 55844.7, 57431.2, 58716.5, 59689.7, 60671., 61329.6, 62657.5, 63662.8, 64337.4, 65697.3, 66382.6, 68809.1, 70568.9, 72710.1}, {73070.1, 74883.3, 75248.6, 75981.9, 76349.9, 78203.1, 80834.9, 81594.9, 81976.2, 82741.5, 85448., 86229.2, 86621.2, 87407.8, 91394.2, 92202.2, 93828.8, 95882., 97540.5, 98375.2}, {99633.8, 100900., 103887., 104748., 106047., 107353., 109108., 110433., 113108., 114006., 115361., 115814., 118094., 118553., 119934., 122254., 122720., 125067., 125539., 126960.}, {131272., 132240., 132725., 133699., 135165., 136640., 138618., 140112., 141613., 147186., 147698., 150271., 152346., 154959., 156537., 158124., 160252., 163470., 164550., 166177.}, {167812., 168358., 170004., 173318., 176105., 181176., 181744., 182883., 184598., 185171., 186896., 188051., 188629., 189789., 193290., 193877., 195642., 205797., 207615., 209442.}, {211890., 217450., 220569., 224975., 226241., 226876., 228148., 230062., 232628., 233916., 234561., 236502., 240409., 243688., 244347., 245667., 246328., 247654., 249648., 253661.}, {257707., 260421., 264520., 266581., 267960., 270034., 272813., 274207., 277007., 278413., 283359., 284780., 286919., 287634., 289066., 291220., 291940., 294105., 297732., 305052.}, {307265., 308745., 309486., 318451., 319958., 320712., 324499., 329072., 329838., 333677., 336765., 339091., 341424., 343765., 350837., 353210., 354797., 355591., 360378., 364391.}, {369236., 372484., 379023., 384790., 387276., 388937., 389769., 391436., 392270., 396457., 401510., 404049., 406595., 414283., 415142., 422043., 422909., 432501., 435136., 438661.}, {441314., 443087., 443975., 445754., 449322., 452007., 456500., 457402., 461922., 468287., 472860., 475615., 481148., 482073., 483926., 484854., 489508., 495121., 496059., 503600.}, {504547., 507392., 509294., 510246., 515019., 518853., 527533., 539218., 541178., 544125., 548066., 555991., 556986., 558978., 562972., 571004., 572012., 574031., 578079., 581124.}, {584177., 586217., 592358., 593385., 604737., 607851., 608891., 612016., 614104., 617243., 624598., 627763., 629877., 630936., 634117., 636243., 639437., 645850., 649069., 652296.}, {659855., 662023., 665282., 671823., 676202., 679495., 681695., 696081., 706129., 711742., 716249., 718507., 721902., 723035., 726441., 738995., 745888., 747040., 756288., 760933.}, {763261., 770266., 778479., 784373., 785554., 787919., 792660., 796226., 799799., 802186., 803380., 805772., 809367., 814172., 816580., 817785., 821407., 827460., 828673., 834753.}, {839633., 842078., 850665., 856824., 864246., 865486., 869211., 871699., 872944., 882939., 891730., 894250., 898037., 903098., 906904., 909445., 920925., 926050., 932476., 936343.}, {940218., 945396., 951889., 959710., 968876., 971502., 975449., 979403., 980723., 999296., 1.00063*10^6, 1.00731*10^6, 1.01267*10^6, 1.01535*10^6, 1.02478*10^6, 1.02748*10^6, 1.0329*10^6, 1.04104*10^6, 1.04513*10^6, 1.05332*10^6}, {1.05606*10^6, 1.06018*10^6, 1.07395*10^6, 1.08087*10^6, 1.08225*10^6, 1.09338*10^6, 1.11158*10^6, 1.11439*10^6, 1.1158*10^6, 1.12427*10^6, 1.12851*10^6, 1.13135*10^6, 1.13987*10^6, 1.14415*10^6, 1.14986*10^6, 1.15272*10^6, 1.15845*10^6, 1.17429*10^6, 1.17574*10^6, 1.17863*10^6}, {1.18008*10^6, 1.18879*10^6, 1.20923*10^6, 1.21069*10^6, 1.2151*10^6, 1.21951*10^6, 1.22393*10^6, 1.22688*10^6, 1.23132*10^6, 1.2328*10^6, 1.2417*10^6, 1.24467*10^6, 1.25361*10^6, 1.25511*10^6, 1.26259*10^6, 1.26408*10^6, 1.2761*10^6, 1.27761*10^6, 1.2897*10^6, 1.29424*10^6}, {1.30946*10^6, 1.32169*10^6, 1.32783*10^6, 1.3309*10^6, 1.33244*10^6, 1.33552*10^6, 1.33706*10^6, 1.35408*10^6, 1.36029*10^6, 1.36964*10^6, 1.37432*10^6, 1.38215*10^6, 1.38372*10^6, 1.38686*10^6, 1.39157*10^6, 1.39314*10^6, 1.39787*10^6, 1.40576*10^6, 1.40734*10^6, 1.41685*10^6}, {1.4248*10^6, 1.42639*10^6, 1.43436*10^6, 1.44556*10^6, 1.45037*10^6, 1.45359*10^6, 1.45841*10^6, 1.46486*10^6, 1.46971*10^6, 1.47456*10^6, 1.48754*10^6, 1.49731*10^6, 1.49895*10^6, 1.50221*10^6, 1.51367*10^6, 1.5186*10^6, 1.52189*10^6, 1.52847*10^6, 1.53673*10^6, 1.54335*10^6}, {1.54832*10^6, 1.5533*10^6, 1.57163*10^6, 1.57665*10^6, 1.57833*10^6, 1.58671*10^6, 1.59849*10^6, 1.60187*10^6, 1.60693*10^6, 1.62218*10^6, 1.62388*10^6, 1.63238*10^6, 1.64433*10^6, 1.64775*10^6, 1.64946*10^6, 1.65804*10^6, 1.67008*10^6, 1.67353*10^6, 1.68043*10^6, 1.69602*10^6}, {1.6995*10^6, 1.70472*10^6, 1.70646*10^6, 1.70994*10^6, 1.71518*10^6, 1.71692*10^6, 1.72742*10^6, 1.73093*10^6, 1.74852*10^6, 1.76796*10^6, 1.77862*10^6, 1.7804*10^6, 1.78396*10^6, 1.7893*10^6, 1.79466*10^6, 1.79644*10^6, 1.80181*10^6, 1.82155*10^6, 1.82335*10^6, 1.82876*10^6}, {1.84321*10^6, 1.84864*10^6, 1.85954*10^6, 1.86135*10^6, 1.86682*10^6, 1.87776*10^6, 1.89241*10^6, 1.89424*10^6, 1.89791*10^6, 1.90343*10^6, 1.91633*10^6, 1.92002*10^6, 1.92187*10^6, 1.93854*10^6, 1.96088*10^6, 1.97023*10^6, 1.97585*10^6, 1.97772*10^6, 1.98711*10^6, 1.98899*10^6}, {1.9984*10^6, 2.00029*10^6, 2.00973*10^6, 2.0154*10^6, 2.01729*10^6, 2.02677*10^6, 2.02867*10^6, 2.03818*10^6, 2.04389*10^6, 2.05153*10^6, 2.08027*10^6, 2.0899*10^6, 2.09183*10^6, 2.10148*10^6, 2.10922*10^6, 2.11503*10^6, 2.12474*10^6, 2.14227*10^6, 2.14812*10^6, 2.15987*10^6}, {2.17164*10^6, 2.1736*10^6, 2.19133*10^6, 2.19726*10^6, 2.20121*10^6, 2.20715*10^6, 2.2131*10^6, 2.23098*10^6, 2.23298*10^6, 2.24295*10^6, 2.25695*10^6, 2.26296*10^6, 2.26698*10^6, 2.26898*10^6, 2.273*10^6, 2.29719*10^6, 2.29921*10^6, 2.31136*10^6, 2.31744*10^6, 2.33371*10^6}, {2.34186*10^6, 2.34799*10^6, 2.35412*10^6, 2.37257*10^6, 2.38903*10^6, 2.39109*10^6, 2.39521*10^6, 2.40141*10^6, 2.40348*10^6, 2.40968*10^6, 2.41589*10^6, 2.42627*10^6, 2.4325*10^6, 2.445*10^6, 2.45752*10^6, 2.47637*10^6, 2.47847*10^6, 2.48477*10^6, 2.48897*10^6, 2.50794*10^6}, {2.51639*10^6, 2.54184*10^6, 2.54609*10^6, 2.54822*10^6, 2.55248*10^6, 2.55887*10^6, 2.56101*10^6, 2.57383*10^6, 2.57811*10^6, 2.59311*10^6, 2.62542*10^6, 2.63623*10^6, 2.64273*10^6, 2.65575*10^6, 2.67098*10^6, 2.67753*10^6, 2.68845*10^6, 2.70158*10^6, 2.70377*10^6, 2.70816*10^6}, {2.71474*10^6, 2.72354*10^6, 2.73014*10^6, 2.74117*10^6, 2.74338*10^6, 2.7478*10^6, 2.76329*10^6, 2.76994*10^6, 2.77661*10^6, 2.78105*10^6, 2.78772*10^6, 2.78995*10^6, 2.8011*10^6, 2.80333*10^6, 2.82122*10^6, 2.83467*10^6, 2.84366*10^6, 2.86393*10^6, 2.86844*10^6, 2.87522*10^6}, {2.8888*10^6, 2.89107*10^6, 2.89788*10^6, 2.90469*10^6, 2.91151*10^6, 2.94345*10^6, 2.95032*10^6, 2.96637*10^6, 2.97096*10^6, 2.98016*10^6, 2.99168*10^6, 3.00091*10^6, 3.01479*10^6, 3.03566*10^6, 3.04031*10^6, 3.04263*10^6, 3.04729*10^6, 3.07528*10^6, 3.08933*10^6, 3.09636*10^6}, {3.09871*10^6, 3.11751*10^6, 3.12458*10^6, 3.13165*10^6, 3.14819*10^6, 3.16003*10^6, 3.17665*10^6, 3.1814*10^6, 3.21717*10^6, 3.22435*10^6, 3.23154*10^6, 3.23873*10^6, 3.24834*10^6, 3.25555*10^6, 3.26037*10^6, 3.26277*10^6, 3.27724*10^6, 3.28448*10^6, 3.28932*10^6, 3.29174*10^6}, {3.299*10^6, 3.32569*10^6, 3.33299*10^6, 3.33543*10^6, 3.3403*10^6, 3.36227*10^6, 3.36471*10^6, 3.3696*10^6, 3.38431*10^6, 3.38676*10^6, 3.39412*10^6, 3.39904*10^6, 3.43107*10^6, 3.43848*10^6, 3.4459*10^6, 3.45086*10^6, 3.46077*10^6, 3.47318*10^6, 3.51306*10^6, 3.53308*10^6}, {3.53558*10^6, 3.54311*10^6, 3.54813*10^6, 3.55064*10^6, 3.55567*10^6, 3.55818*10^6, 3.57077*10^6, 3.58843*10^6, 3.59601*10^6, 3.60107*10^6, 3.6112*10^6, 3.62388*10^6, 3.63149*10^6, 3.65695*10^6, 3.66205*10^6, 3.6646*10^6, 3.67226*10^6, 3.71069*10^6, 3.71583*10^6, 3.72612*10^6}, {3.739*10^6, 3.74673*10^6, 3.75448*10^6, 3.76482*10^6, 3.77259*10^6, 3.78814*10^6, 3.79333*10^6, 3.80113*10^6, 3.80373*10^6, 3.81153*10^6, 3.81674*10^6, 3.82456*10^6, 3.82717*10^6, 3.84022*10^6, 3.84283*10^6, 3.86377*10^6, 3.87164*10^6, 3.89792*10^6, 3.90319*10^6, 3.91901*10^6}, {3.93751*10^6, 3.97463*10^6, 3.98261*10^6, 4.00926*10^6, 4.01461*10^6, 4.03869*10^6, 4.04941*10^6, 4.05746*10^6, 4.06284*10^6, 4.0709*10^6, 4.08976*10^6, 4.09785*10^6, 4.10595*10^6, 4.11947*10^6, 4.12218*10^6, 4.13572*10^6, 4.15201*10^6, 4.16288*10^6, 4.1765*10^6, 4.17922*10^6}, {4.19286*10^6, 4.20379*10^6, 4.22021*10^6, 4.23392*10^6, 4.2669*10^6, 4.26966*10^6, 4.27517*10^6, 4.2862*10^6, 4.29449*10^6, 4.30002*10^6, 4.31108*10^6, 4.33603*10^6, 4.34993*10^6, 4.35827*10^6, 4.36663*10^6, 4.36942*10^6, 4.37778*10^6, 4.39174*10^6, 4.40852*10^6, 4.41132*10^6}, {4.42534*10^6, 4.43375*10^6, 4.44218*10^6, 4.45062*10^6, 4.46187*10^6, 4.47033*10^6, 4.48443*10^6, 4.49291*10^6, 4.49573*10^6, 4.50422*10^6, 4.51271*10^6, 4.52121*10^6, 4.5354*10^6, 4.54677*10^6, 4.58095*10^6, 4.58951*10^6, 4.62099*10^6, 4.62385*10^6, 4.64969*10^6, 4.65545*10^6}, {4.66696*10^6, 4.68137*10^6, 4.72475*10^6, 4.73635*10^6, 4.7625*10^6, 4.76832*10^6, 4.77123*10^6, 4.7858*10^6, 4.79456*10^6, 4.79748*10^6, 4.80624*10^6, 4.81209*10^6, 4.83845*10^6, 4.85019*10^6, 4.86783*10^6, 4.89434*10^6, 4.91796*10^6, 4.92684*10^6, 4.9298*10^6, 4.94758*10^6}, {4.95648*10^6, 4.97133*10^6, 4.9743*10^6, 4.98918*10^6, 4.99216*10^6, 5.0011*10^6, 5.01602*10^6, 5.03695*10^6, 5.04294*10^6, 5.07893*10^6, 5.08194*10^6, 5.10601*10^6, 5.10902*10^6, 5.1241*10^6, 5.12712*10^6, 5.14223*10^6, 5.17251*10^6, 5.17857*10^6, 5.18161*10^6, 5.18768*10^6}, {5.19984*10^6, 5.22419*10^6, 5.23333*10^6, 5.24249*10^6, 5.24554*10^6, 5.26388*10^6, 5.28838*10^6, 5.30065*10^6, 5.30679*10^6, 5.31601*10^6, 5.36223*10^6, 5.36531*10^6, 5.38077*10^6, 5.38386*10^6, 5.39315*10^6, 5.39934*10^6, 5.40864*10^6, 5.41795*10^6, 5.43037*10^6, 5.43969*10^6}, {5.44591*10^6, 5.4646*10^6, 5.47395*10^6, 5.48644*10^6, 5.50519*10^6, 5.51145*10^6, 5.53338*10^6, 5.55222*10^6, 5.56794*10^6, 5.60576*10^6, 5.61523*10^6, 5.63421*10^6, 5.6437*10^6, 5.64687*10^6, 5.68178*10^6, 5.6945*10^6, 5.72317*10^6, 5.73913*10^6, 5.74872*10^6, 5.77112*10^6}, {5.77752*10^6, 5.78073*10^6, 5.79035*10^6, 5.8064*10^6, 5.81926*10^6, 5.82892*10^6, 5.83536*10^6, 5.84502*10^6, 5.89348*10^6, 5.91616*10^6, 5.93238*10^6, 5.93563*10^6, 5.95514*10^6, 5.97142*10^6, 5.97467*10^6, 6.00078*10^6, 6.00404*10^6, 6.03348*10^6, 6.07285*10^6, 6.10246*10^6}, {6.11234*10^6, 6.13874*10^6, 6.16851*10^6, 6.17845*10^6, 6.18176*10^6, 6.21163*10^6, 6.21828*10^6, 6.22826*10^6, 6.23159*10^6, 6.24824*10^6, 6.26158*10^6, 6.27827*10^6, 6.2883*10^6, 6.29833*10^6, 6.31173*10^6, 6.31843*10^6, 6.32849*10^6, 6.33184*10^6, 6.34863*10^6, 6.35199*10^6}, {6.37217*10^6, 6.3789*10^6, 6.38901*10^6, 6.39912*10^6, 6.40249*10^6, 6.42275*10^6, 6.42951*10^6, 6.4532*10^6, 6.48372*10^6, 6.49051*10^6, 6.50071*10^6, 6.53475*10^6, 6.54156*10^6, 6.55521*10^6, 6.56546*10^6, 6.57229*10^6, 6.58597*10^6, 6.59282*10^6, 6.6168*10^6, 6.6271*10^6}, {6.63396*10^6, 6.65802*10^6, 6.67868*10^6, 6.68558*10^6, 6.68902*10^6, 6.74085*10^6, 6.74778*10^6, 6.7894*10^6, 6.79983*10^6, 6.81026*10^6, 6.83116*10^6, 6.85208*10^6, 6.87653*10^6, 6.88703*10^6, 6.89403*10^6, 6.89753*10^6, 6.90453*10^6, 6.9361*10^6, 6.94664*10^6, 6.96774*10^6}} PrimePattern20220416SFN.nb
  19. @Sensei and others. You know more about the tech aspects than me. I am 20 years behind. I am behind on making modern websites. But that is a future thread. How big is a current jpeg pic? 12 megs? When I was in graphics school web stuff for the computer screen we keep it 72mp. For print it would be increased. We were taught that RGB and CMYK were just different color scales and you change them to match print colors to the desired screen colors. Like how the paint of the car looks different under fluorescent light. I also do not know how the print head mixes colors. And how it breaks the resolution of the pic to colors. But that is complex. It has been perfected over 40 years. I have some graphic experience. Some of the best graphics I have seen is simple black and white. Back in the 80’s people made zines and comics on a black and white photocopiers. One time I had a $5000 color copier that was useless because we didn’t have a $7000 computer interface. I tell this story just to illustrate sometimes the inkjet is overkill for print graphs let alone expensive. More the art side then the science. But we are supposed to fit the science to meet the needs of the art. What type of art is everyone making? I know this is a science forum but STEAM (science, technology, engineering, art, and math).
  20. For the pixels on your computer screen the primary colors of red, blue, and green are arbitrary. It is just a reference. You have white 255, 255, 255 as a mixture of all colors and black 0,0,0. All other colors are a variation of that scale. That is a light source. For printing a different primary scale is used. I don’t know why they picked CMYK. It is just a stating point. I don’t believe you mix these colors like paint. Because as you know from Kindergarten it makes different shades of brown. I was taught that print work is also pixelated like the grays of a news paper. Gray is black pixels spaced further apart. I am still confused when Photoshop ask which primary colors you want to use. I don’t print much work. But you will see the color scheme in the properties.
  21. You are probably wondering why I replied to your post a year after you wrote it. I did not see this post. I am posting a second time to ask if your scientific computation has led you to mine bitcoin. The reason I ask is that I want to study bitcoin and the blockchain. Many participants to this forum community sigh when I talk about breaking RSA. But to break RSA you have to factor a large semi-Prime. I attempted to find a pattern in the factorization of factors and not a pattern in Primes. If you can factor the semi-Prime you can break RSA. But most public key crypto relies on finding Primes. Bitcoin relies on elliptic curve crytpo, But it too relies on the modulus and a large Prime number. The elliptic curve crypto creates a public and private key that control the redemption of bitcoin. Imagine if we could find these Prime numbers we could take any public key on the blockchain and collect as many coins as we wanted. There have been new stories of crypto currency theft, but the problem is not collecting the coins but liquifying them as cash. The block chain protects theft by record of transactions. I am not suggesting we steal bitcoin. I am just saying bitcoin is not secure. I do not understand the technical details of elliptic crypto, but in my reading it mentioned and attack based on large Prime numbers. I know everyone is mining crypto, but it still might be a field of data science you wish to explore. I am just starting to study it. Perhaps it would be better to mine crypto legally. I posted my “Simple Yet Interesting” thread looking for collaboration in solving public key crypto, I am not naive. I understand why no one takes the post seriously. But I tell you that you will not find a pattern in Primes until you find a pattern in factoring. I intend to use data science to show my equations. Again, the problem to defeat public key crypto is not just a pattern in Primes. Almost all of the one-way-functions rely on factoring. To me this is the biggest flaw in public key crypto. To explain what I mean, if a factor has only 2 numbers other than 1 and itself you can estimate where the factors occur. If the first factor is small the other factor is large. If the second factor is large only certain smaller numbers can be multiplied to get a result. Yes, this is difficult and time consuming if you set your rules correctly you have limited estimates. This is well known, I claimed, for the special case where only 2 Prime factors exist. The rules can be put into an equation and find the factors due to the fact that there are only 2 factors. So in conclusion, that is my data science project. I want to study bitcoin. But I fear one day block chains will crash once the ciphers they are based on are defeated. The whole crypto currency seems very much like an elegant scheme. But what if the computer data can’t find any pattern? The pattern is there, we just can’t see it. We are looking for series or higher mathematics when a simple solution is best.
  22. I too am interested in scientific computing. I have a degree but there is a ton of stuff I don’t know. Do you mean science problems or data science? The web is full of science problems but finding resources for data science seems more difficult. I want to crunch primes or test multiple patterns in numbers. Some stuff Wolfram Alpha helps. But I want more control like in a programming language. I know Mathematica and Excel and Python can help. But there is also a problem of finding data unless you are creating your own. YouTube should have some stuff but I haven’t found a good video on number crunching. So if any knows how to program a program for recursion or factions let me know. Where you thinking mining crypto?
  23. Looks like a protractor to me. It is going from 0 to 90. It does have many scales but it just looks like it is made for a map. There are many things it would be able to do on a map. Like taking the scale on the map versus actual distance. That is my guess. What other pictures did the search engine show that were similar?
  24. This is just first inspection. But a kind of intuition starting point. Thus it probably doesn't work. But I just needed a starting point to test where I think zeros could occur. And where if they didn't occur would show. I believe zeros could only occur with even numbered fractions. But then again what do I know. In memory of Pappy Craylar: Hypothesis on critical zeros on Riemann Zeta Function Non-critical zeros have been found at an x-value of ½ Possibly forming an isosceles triangle. What if we were to expand this to all even powers. That is ½ , ¼ , ⅙ … towards zero and ½ + ½^(½^n)... towards 1? This fraction combined with and complex number would alternate between positive and negative values cancelling out to form zero. First we should test values at ¼ that are a similar isosceles triangle to ½ non-trivial zeros. If we can not find a trivial zero at these values it supports the Riemann Hypothesis.
  25. http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html https://mathworld.wolfram.com/RiemannZetaFunctionZeros.html https://m.youtube.com/watch?v=sD0NjbwqlYw&pp=QAFIAQ%3D%3D https://m.youtube.com/watch?v=d6c6uIyieoo These are the best explanations I have found so far. It is enough to get started. I still don’t understand the displacement of Prime numbers as it relates to the zeta function. My attempts in my post “Simple Yet Interesting” I encountered complex numbers and I also had decimals and fractions. I am looking back here the Riemann Zeta function also deals with those. So I’m wondering why a was searching for a perfect integer. I have some trials I want to test for zeros. The complex numbers are a game changer. Well I moved on to a new problem. Unfortunately it too is related to Prime numbers. Proving it wrong I would need to find a nontrivial zero. I don’t have a clue how to prove it is always true. If that is even possible. My goal is to learn and perform my own zeros tests.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.