Jump to content

stephaneww

Senior Members
  • Posts

    504
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by stephaneww

  1. I don’t see why this matters. You can't compare G to another value, it's just a data in the equations, whereas you can compare energy densities by volume, and that's the problem with the vacuum catastrophe. You mean it's not important ? Thank you, I didn't know that.
  2. Yes, but the vacuum catastrophe is dimensionless. No, it's Planck's energy (J: kg.m^2.t^-2) I made a mistake and corrected it later : (1)=mp.lp.tp2 is right (1) [math]\frac{m_p}{l_p.t_p^2}[/math] (J/m^3) is right I don't have another equation with F^2 I only have E^2=m^2c^4+p^2.c^2 to propose as a comparable example of a square. from a comparison of values in a spreadsheet where I have a whole series of physical values and relationships between them. Yes, but I also have no idea of the physical relevance of E^2. If you do, I'm interested
  3. I suggest that QM is not of the same nature as relativity: I put the comological constant in a context of MQ by dimensional analysis. Here we find an extremely low energy density by volume The multiplication of the two square roots of the energy volume densities of the QM gives the value of the cosmological constant in relativity To my knowledge, there is no theory that includes square roots of energy volume density in QM, relativity or cosmology. (I know very little about QM and relativity) The only context in which I could find this dimension (J/m^3)^1/2 is with the Hildebrand solubility parameter I suggest that QM is not of the same nature as relativity: I put the comological constant in a context of MQ by dimensional analysis. Here we find an extremely low energy density by volume The multiplication of the two square roots of the energy volume densities of the QM gives the value of the cosmological constant in relativity To my knowledge, there is no theory that includes square roots of energy volume density in QM, relativity or cosmology. (I know very little about QM and relativity) The only context in which I could find this dimension (J/m^3)^1/2 is with the Hildebrand solubility parameter I don't know ooops error (1)=[math]\frac{m_p}{l_p.t^2}[/math] is right
  4. and of course mission Planck is an experiment (shame on me ): https://en.wikipedia.org/wiki/Planck_(spacecraft)
  5. I don't know if it's really from an experiment, but I use and datas from the Planck satellite from Wikipedia : [math] \Lambda=1,1056*10^{-52}.m^{-2}[/math] [math]\rho_{\Lambda}c^2=\frac{c^4 \Lambda}{8 \pi G}[/math] (2) and : [math]\frac{m_p.l_p^2}{t_p^2}[/math] (1) vaccum catastrophe = (1)/(2) Thank you, it was about Fp indeed. So a priori there's no physical sense of force squared... right ? In the same vein: does a squared pulse have a physical meaning in QM ? I ask the question because I've already seen it in an unpublished research work. Edit : The origin of the last messages after May comes from this thread: : https://www.scienceforums.net/topic/122287-puzzle-for-the-week-mystery-and-gum-ball-around-a-fine-structure-constant-in-planck-units-dimensioned-with-the-coulomb/ .. where I try to propose a link between the fine structure constant and the cosmological constant problem with this formula: : [math]\Large{\alpha=\frac {F_p^2}{e^2}. \frac {t_p^3}{m_p.2.\pi} . \frac {8.\pi^2}{c} .\frac {1}{\mu_0} }[/math] - [math]\alpha[/math]: fine constant structure - Fp: Planck's force - e : elementary charge - tp3/(mp.2.pi) : inverse of Planck's surface power density * 1/(2pi) note 1 : units of surface power density = W/m^2 = kg/s^3 note 2 : possible link with the problem of the cosmological constant ? - c : speed of light - μ0 : vacuum permeability
  6. Swansont : It seems to me that I linked the two questions from the very beginning, didn't I
  7. Yes, okay, but the pressure should decrease as the volume increases. But the pressure of the cosmological constant is constant as the volume increases. And I don't know what a square force is physically speaking to know if my "equality" can have a physical meaning
  8. Yes, we've already talked about it, but for a force squared, what about it?
  9. The simplicity of your argument had eluded me. Thank you. Edit : In the cosmological constant problem, there are no gravitational terms in the simplified formulas either, right ?
  10. ... The signs of the charges are opposite (electrically neutral universe), the Coulomb force is negative but its square is positive for example
  11. yes, that help me, thank you 👍 after simplication the equality is correct and ... ...about of the doubt of the interest of the physical meaning of equality : I had note before that Fp = Coulomb's force with Planck's units ([math]q_1=q_2=q_p[/math] and [math]r=l_p[/math]) But I don't know if that equality can make physical sense with the problem of the cosmological constant with or whitout an electromagnetic framework . Do you have any idea ? About the Coulomb's force, there was a particular problem with the sign of the charges. . Can this "equality" help solve or am I going to fall back on circular reasoning... ?
  12. Me neither, but here it's more a question of the physical meaning of equality, and on this point I have a huge doubt.
  13. This will be simpler than replacing Planck's units with their formulas in [math] F_p^2[/math] ? Simplifying [math] F_p^2[/math] aside I believe it's just as simple no ? Besides, problem for me, I don't see how you do it.. Edit : I understand but I don't know which is the simplest method
  14. Okay, but not much of physical interest, except maybe something to do with the cosmological constant problem. [math]\Large{\frac {1}{\alpha}=\frac {F_p^2}{e^2}. \frac {t_p^3}{m_p.2.\pi} . \frac {8.\pi^2}{c} .\frac {1}{\mu_0} }[/math] - [math]\alpha[/math] : fine constant structure - [math]F_p[/math] : Planck's force - [math]e[/math] : elementary charge - [math] \Large{\frac {t_p^3}{m_p.2.\pi}} [/math] : inverse of Planck's surface power density * 1/(2pi) note 1 : units of surface power density = W/m^2 = kg/s^3 note 2 : possible link with the problem of the cosmological constant ? - [math]c[/math] : speed of light [math]\mu_0[/math] : vacuum permeability I would suggest the simplifications later in another message: too afraid to exceed the maximum editing time to correct the latex
  15. the 1/10^-7 = 10^7 came from μ0 = 4π × 10^−7 kg m A^−2 s^-2, so no puzzle finaly for [math]\alpha[/math] , except for me , if I don't made a new no sense
  16. Hi I still have one more check to do before concluding that we can no longer simplify the units making alpha dimensionless ^^
  17. when you have a moment: enter in excel the exact values (from the formulas) of : - Planck's mass - Planck's length then the most accurate value [math]C [/math] of the Coulomb you can find. (6,24150962915265*10^18 elementary charge ) calculate the value of : [math]m_p.l_p/C^2*10^7[/math] estimate the numerical deviation in % from the inverse of the fine structure constant ([math]1/ \alpha[/math]) I find 0.00002%. Can you confirm please ? gauge the relevance in dimensional terms knowing that this calculation comes from this question: https://www.scienceforums.net/topic/118858-the-solution-of-the-cosmological-constant-problem/?do=findComment&comment=1118152 which also gives an acceptable approximation of the value of the vacuum catastrophe, but dimensioned, whereas the vacuum catastrophe is dimensionless. Please ___________________________________ basic working formula before simplification : [math](F_p^2/e^2)\text{ / Planck's surface density (in kg/s^3=W/^2)[]/math] - Fp: Planck force - e: elementary charge
  18. This proposal suits me. What title do you propose for the new thread ?
  19. Hmm, no reaction, it's most probably a nonsense.
  20. I confess I've lost track a little over the time... but is it foolish to consider the vacuum of the universe as a photon bath of the CMB as a support for an electromagnetic field that would fill the vacuum of the universe ?
  21. Hi Modred. About that : what do you think about this opinion please ? source : http://backreaction.blogspot.com/2019/09/the-five-most-promising-ways-to.html
  22. ok (you omitted a c^2: [math]\rho_{\Lambda}=\frac{c^2 \Lambda}{8 \pi G_n}[/math] ) for the "quantum energy density of the vacuum" (B), if a temperature TB/m^3 = EB/kB/m^3 can be made to correspond, we have TB/m^3 = about 10^-110 K/m^3. There would be no absolute zero due again to the fluctuations of the quantum vacuum. (E=kB T) for the quantum mass density (A=10^96 kg/m^3) the mass of the current universe being 10^54 kg would be the index of a possible physical nonsense of this presentation, without it being a sufficient argument to prefer its value in K/m^3. as you suspect, the rest of your explanation escapes me, and in particular the reject of the use of the statistical mechanics of the mix edit : for the record, can you remind me what [math]U[/math] is, please?
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.