Jump to content

dim22

New Members
  • Posts

    1
  • Joined

  • Last visited

Everything posted by dim22

  1. Hi, i'm studying a robot arm i have done davenit and direct geometric model and i obtain this equations system J'ai essayé par des substitutions du type cos=1-u²/1+u² mais le système devient rapidement inextricable.... system eq1=335*cos(t2)* sin(t3) -77*sin(t2)-260*sin(t2)*sin(t4)+260*cos(t2)*cos(t3)*cos(t4)+85=x; eq2=335*cos(t3)-260* sin(t3)*cos(t4)=y; eq3=0-335*sin(t2)* sin(t3) -77*cos(t2) -260*cos(t2)*sin(t4)-260*sin(t2)*cos(t3)*cos(t4) =z; which is equal to (1)S+(2)*C2 =>eq1=260*sin(2*t2)*sin(t4)== 8-x*sin(t2)-z*cos(t2); eq2=335*cos(t3)-260*sin(t3)*cos(t4)-y==0; eq3=0-335*sin(t2)* sin(t3) -77*cos(t2) -260*cos(t2)*sin(t4)-260*sin(t2)*cos(t3)*cos(t4) =z; avec T2 [ -PI/4. PI/2] T3[ -PI/4 PI/4] T4 [0 PI/2 ] Now i want to solve it and express t2 = f(x,y,z) t3=g(x,y,z) t4 = h(x,y,z) it ty many ways (paul method susbstitution cos=1-u²/1+u²) but i don't manage to find the results If someone can help me even with a computing solution fro mapple and so on thanks
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.