Jump to content

Shadax

Members
  • Posts

    2
  • Joined

  • Last visited

Everything posted by Shadax

  1. [math]\int \int \int_V \nabla \times F \cdot dV = \int \int_S F \cdot dS[/math] Stokes theorem states [math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} F \cdot dr[/math] Greens theorem is a special case of Stokes theorem. force is [math]F = \frac{\partial U(r)}{\partial r}[/math] substitution gives [math]\int \int_{S} \nabla \times F \cdot dS = \oint_{\partial S} \frac{\partial U(r)}{\partial r} \cdot dr[/math] As you can see it has dimensions of energy. Consider the magnetic field now [math]B = \frac{\hbar}{emc^2} \frac{1}{r}\frac{\partial U(r)}{\partial r}[/math] Plugging in only part of the magnetic field expression [math]\frac{\hbar}{emc^2} \frac{1}{r}[/math] [math]\int \int_{S} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dS] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dr[/math] working from the last equation, performing the integral over the volume this time will yield [math]\int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math] Since this is just essentially a magnetic field times a surface, we have a magnetic flux [math]\Phi = \int \int_S B \cdot dS = \int \int \int_{V} \frac{\hbar}{emc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \oint_{\partial S} \frac{\hbar}{emc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math] we should obtain a quantization [math]\hbar = e\Phi = \frac{e}{2\pi} \int \int_S B \cdot dS = \frac{1}{2\pi} \int \int \int_{V} \frac{\hbar}{mc^2} \frac{1}{r} \cdot [\nabla \times F \cdot dV] = \frac{1}{2\pi}\oint_{\partial S} \frac{\hbar}{mc^2} \frac{1}{r} \frac{\partial U(r)}{\partial r} \cdot dS[/math]
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.