I'm looking for an expression for the deflection of light in a static gravitational field. Referring to 'deflection of star light past the sun' in Sean Carroll's "Spacetime and Geometry" - equation 7.80 for the "transverse gradient":
Deflection angle is
As far as I understand it, the transverse gradient is only valid for weak fields/small deflection. And I'm not looking for a general integral solution - I'd like to plot photon paths in strong fields, so I'm looking for the instantaneous deflection, which I'll plot/integrate numerically, based on mass, radial distance from mass, and angle of photon trajectory. It should not use the Schwarzschild solution/metric, because I don't want the singularity at r=Rs and it only needs to be in 2 dimensions, because of spherical symmetry. So, is there an expression for the polar coordinates r2, θ2 and trajectory a2, for a photon travelling from p1 to p2, using M, r1, θ1, a1, L? Below is a diagram which I hope illustrates it.
Many thanks