Hi everyone, I have a problem when doing an approximation.
The problem comes in the final results that I have to demonstrate two functions below equal each other
frac{1}{8\sqrt{2}\cos{\frac{\phi-\phi_0}{2}}(1-\sin{\frac{\phi-\phi_0}{2}})\sqrt{1-\sin{\frac{\phi-\phi_0}{2}}}} = \frac{1}{[1+\cos{(\phi-\phi_0)}]^2}.
\begin{equation}
\frac{1}{8\sqrt{2}\cos{\frac{\phi-\phi_0}{2}}(1-\sin{\frac{\phi-\phi_0}{2}})\sqrt{1-\sin{\frac{\phi-\phi_0}{2}}}} = \frac{1}{[1+\cos{(\phi-\phi_0)}]^2}.
\end{equation}
I have checked the two functions by numerical calculation to a graph and see that two functions
give exactly the same shape with the $\phi\leq \pi$ as shown in the figure.
\begin{figure}[!t]
\centering
\includegraphics[scale=1]{Nonuniform-ka20-E.eps}
\caption{Comparison between two functions}
\end{figure}