ahmet
Senior Members-
Posts
442 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Everything posted by ahmet
-
pink winds from russia ... wwuuuuuuu :) :) :) https://www.youtube.com/watch?v=wbSxTL_Fppw&list=RDy_ONldN0pCE&index=9
-
as it explained we will accept [math] -\infty,\infty [/math] as points. Thus this is not a type of discontinuity. (but if any case be occured like right limit and left limit are different points then this will be discontinuity.) and arc means inverse trygonometric functions (e.g. arcsin(x) ,arccos(2x), etc)
-
hi, I do not remember whether any function given in this category has had discontinuoum point. But with one notation: [math] -\infty, \infty [/math] are accepted as points. (This is real analysis) thus if any point accepts its limit one of these points,then this is not a problem. (however, one point cannot accept both of these points as limit point ,because this will be accepted as discontinuoum) elementary functions : LAPTE L: logaritmic A: arc P: polynomic T: trygnometric E: exponential. thanks.
-
-
graphs yes. To me,although during maths BSc program no one mentioned ( in spite of other very strict contexts ), (because that example is too simple to me ( 1= radius circle) I almost always was thinking it would not be accepted even as a function , because for instance when we draw the graph, it is possible to find two elements which their values (under the functions's rule) are same but, are not equal. ( here if x= sint ,y = cost ,e.g: for t=45 degree , [math] x^2+y^2=1 [/math] is being satisfied but there when the angle is 135 degree , y value is again same thus this should not be accepted as a function in fact) meanwhile, you might be right, because as I remember, the curves and functions are slightly different (probably there was continuoum between the definitions or homeomorphism,I do not remember well,sorry for that but can scan the documents if you want,or you might be better on this issue) the definition of function is simply f: A ---> B , every x element of A should have a value in B , and when [math] x_1=x_2 [/math] (these are element of A) and [math]f(x_1)=f(x_2)[/math] this is compulsory. E xamplifed above for circle. (circle equation is not a function) but if you specifically define it between 90-180 and 0-270 ,then well this will be accepted as a function. (but the domain set and value sets will be changed as you can predict)
-
.....................
-
pahahaha never mind such things. mmm, listening musics gives more pleasure than imaging such things peheh A recommendation: I suggest that you visit Antalya's The Land Of Legends or vialand in istanbul or any else a good theme park rather than imaging such things, I guarantee more pleasure.
-
hi, can we conclude/say that all of elementary functions (that consisted of just one term) were simple curve elementary functions : *trygonometric (cannot consist of more than one term) *logaritmic (cannot contain more than one term) * polynomic (this category can consist of just one term and can be divided to two subcategories : 1) with odd number degree 2) even number degree (e.g. [math] f(x)= x^{3}, g(x)=x^{4} [/math] )) * inverse trygonometric functions (cannot be more than one term) * exponential functions (should contain just one term) All these functions should be simple curve ,could you confirm this information please? clarification: the criterion given in the paranthesis are in fact ,all equivalent and means this for instance : trygonometric functions cannot be defined like this one: [math]f(x)= cos(x) + cos(tx) [/math] t ∈ R constant number) or this one [math]f(x)=sin(x)+cos(x)[/math] for exponential functions for instance none of these are acceptable [math] f(x)=e^{x}+e^{5x} , g(x)= e^{x}+5^{x}[/math] and so on. futhermore just one type of these functions are claimed not the mixture of them (e.g. this is not an issue: [math]f(x)= cos(x)+x^{4} [/math] )
-
oh my gosh! I am full with energy! is this caused by eating walnuts , hahahahaahaha oh natural , natural, natural , one another nice musics even if I do not know what "chameleon" means.
-
it seems like a POPular wind is blowing from russia.
-
I listen only POPular musics full energy!
-
oh my gosh! I can't move to anywhere it is because of covid - 19. may I ask something more while trying to make my boring times go away 1) does youtube pay fee just regarding the count of watching (assume please ads turned on)? 2) what happens if the language option is changable (in fact this is the same question with previous one) A notation: I have detected many music videos ,that seem like some unqualified productions, however, they are watched too many times.
-
music , music , music
-
thank you very much for your suggestions. I do not deal with theoretical explanations anymore or they are not so much important to me. generally books in mathematics are following these scheme: theorem proof lemma proof corollary but here examples are very important to me. I try to analyze them. mmm, some samples of books would be very good if those books include graphs of such functions. (e.g. a differentiable function f(x,y)= x.y , this is just one example for differentiable function or [math] g(x,y)=\frac {e^{x^2-y^2}}{1+sin^4(x^2+3xy+y^2)} [/math] is continuous at everywhere. but I need many many examples. Graphs would be very nice (if exists)) sorry for the occasion if I am doing a mistake but I just thought that complex analysis and basic analysis would be very different branches of maths. (normally these examples (if we divide into two categories) will never appear in same book or any else literature imo. ) but you might be right because the expression of wishes seem similar.
-
pahaha : low reliability in the video but still laughing...:) hahaha hahaha
-
that examplify with broad view of: ** simple functions (exponential, trygonometric, hyperbolic, logaritmic, inversed trygonometric and hyperbolic) ** riemann surfaces ** differentiable functions ** Laurent series (all types) **C-R equations ** conform transformations Note: preferred language is English but (if it is not againts the rules of this website) sources in russian ,arabic and turkish and are also welcome. (theoretical explanations such as lemmas,theorems,corollaries are not needed (should not be emphasized or concentrated on.)) Thanks
-
Dear maths lovers I need sources that classify functions/sequences or functional sequences (in broad view (wide count of examples)) ,such as; *** convergent functions / sequences *** divergent functions / sequences *** differentiable functions (>1 variables) *** differentiable functions (>2 variables) *** regular continous functions *** continuous functions *** integrable functions *** lipschitz criterion satisfied functions *** cantor theorem satisfied functions *** regular convergence (functional sequences) (note: thesis and/or books are preferred ,because the soruce(s) I look for should provide broad view) Thanks in advance
-
The relationship between the mind and the observed world.
ahmet replied to geordief's topic in General Philosophy
I recommend thinking via "approximately multidimensional approach" ....to respond this query what does this mean? in fact, the demonstration belongs to me (i.e.: there is no such thing,but I demonstrate it,follow---->>) multidimensional is a core keyword here: means some obtained functions (e.g.: having knowledge about more than three languages (e.g. german,english,spanish,chinese) and having knowledge about more than three disciplines (e.g: maths physics chemistry biology) I know that all these are difficult but not impossible. I used approximately ,because in fact there should be no limit regarding both disciplines and languages. ..... -
no,not thoroughly. Because there are some contexts in science of education (but I can't provide sources in english before making a research,most of sources that I know are in turkish relevant to this issue ) but succintly : covid 19 is only a trigger or an indirect tool for this. the contexts that I imply on this issue claim that some more realistic and more modern usages should be available (this system presumably/probably is called as "constructive/contemporary education system" in english)
-
ok. I provide one observed report to ensure you understand more clearly. Once coronavirus deteceted and it had been a pandemic issue many countries announced that the some educational processes would not go on as in its normal system. although turkey intented to continue in its normal process after a significant amount of time,the system has not started or continued normally but one thing continued: "distance learning." now,I am not sure whether everything would be same even if the cure or the vaccine of this disease be found after an undefined/unknown time period. meanwhile, there is no effective result in the current case to say that disease has been eradicated. I also believe if the pandemic is not a planned action, its cure or vaccine might take very much amount of time to be found,this is the reason why the humanity could not find the cure or vaccine for HIV. anyway, this is another disccussion here, as the time for cure or accine to be found is unpredictable, can we really say that everything would be same (specifically for education)?
-
what do you think about this issue?
-
Statistics career advice for an applied math/stats major?
ahmet replied to Ravenclau's topic in Applied Mathematics
I disagree to this idea. generally if you are hardworking one,then you will eventually find your way, but nevertheless if you work at a theoretical area, then to me, your chance is smaller. I think computer science is more advantageous. if you have suitability to be a contemporary educator or scientist ,then you will already have option to learn by yourself.(i.e.: you will be able to continue (independently) in mathematics) but in general ,the applied sciences are more advantegous to earn money than theoretic sciences. one more addition: statistics is known as "applied mathematics" in some universities, applied mathematics cannot be limited with statistics though. -
ow,I think I found or I can find many just being relevant and responsible one is sufficient this therad can be closed or deleted.
-
hi, I feel myself at some stages still new. but Although all articles that I scanned contain "results" section with numeric analyses (e.g. manova's or other spss analyses), I do not know whether such types of analyses are mandatory or numeric or graphic representations. I mean only for theoretical articles. hımm yes,at a time I remember one article at a known journal presumably with no discussion and results (in fact the tongue was wholly speculative) but still unsure whether such telling methods can be acceptable by good journals.(here by "good" I mean wide IF and indexed databases, as much as possible) could someone show me articles with no numeric/analytic results in social science and /or arts and humanity sciences? thanks