Hello all!
I'm designing an experiment of using a variable voltage power supply (0-30V, max 10A) to power magnetic copper wires wrapped around an E shaped iron core. The wire has a resistance of 0.000533 ohms per cm, the diameter of the wire is 0.065cm, the iron core's dimensions are 2.54x3x6.5 cm3.
From the calculations, I found that it takes roughly 40 'turns' of the wire around the core; this is in total 760cm of wire length (minus the wire length between the core and the power supply). The total resistance I found in the coil would be 0.405 ohms. From Ohm's Law, I would get around 74A of current from this setup.
Questions:
1. To calculate the magnetic field of a point above the iron core, would I use B=mu*(N/L)*I? Or is this only for the center of a solenoid?
2. The max current running through the wire is 10A. Based on the setup, I'm wondering if this is sufficient to produce a "strong" magnetic field. To find out this strength, would I need to find out the magnetic field, and then its corresponding force at a certain point?
3. The experiment is for maglev purposes actually; I have a superconductor that I'd like to try to see how variable voltage can change the distance between it and the iron core. With this in mind, would my calculations also require a force diagram of the weight of the superconductor and the magnetic force and then I'd be able to find the distance between them at a certain voltage?
4. Finally, I am very new to electricity and would like a lot of feedback on the setup and most importantly safety tips. Any feedback is welcome.
Thank you!