Jump to content

CuriosOne

Senior Members
  • Posts

    268
  • Joined

  • Last visited

Everything posted by CuriosOne

  1. I have "no" relation to Idon'tknow. I read your reply, thanks "very helpfull." As per limits ""a value of plus and minus "infinity" ?? "" Is "dy/dx" infitismally small values of infinity?? What are those values of infinity then then? And why say these are limits x->0 when they are considered infinite?
  2. I was told there is a big difference between variables and numbers... Variables change, numbers are just numbers. A limit has a value, and x can never = 0 So 0 "does" have a numerical value? It must if it plans to reach a known numerical limit of observation. ""Who decides this?"" Make note, we are following a curve here.. My entire perspective has changed, now....
  3. Definetly would love to continue going down the rabbit hole...At this point and step by step I think first we should define what time is and I think its important here. Is time 1 dimensional? In simple words: Why do we use the speed of light as a reference for time? Yes, in regards to limits..
  4. Understood, but one thing to consider is that all these situations follow a curve path, the points referencing "changes" need to lie on the path or curve itself otherwise calculus would render itself useless..I should have asked what's the point of cartessian space.... The distance example I assume holds only true for "linear motion" but really I was never sure of that after learning linear algebra and signal processing. The point here is that in an f(x) function the linear coorididents of x and y connect to the curve points of x and dx on the "curve" path "in cartessian linear coordinates" that does not make sense. But VIOLA! Maybe That's Why Calculus Was Invented And Maybe My Thinking Is Correct! ButI still, if x can never be = 0 does all this explain my confusion? Note: I think x can never be =1 in my opinion.
  5. I didn't say I don't understand it, I just don't understand "tradition." Its tradition to use calculus "centuries old" math tool "contribution of Newton I assume" to derive spontaneous changes of something x "accelerating" from rest mass." Again x=0, really what's the point? "That's just one example" of the many when dealing with masses and gravity "freely flying objects" due to some force or force of attraction, be it electrical forces or gravitational forces that create motion." And yet gravity is a macro external force? I assume Newton knew before we all did, whom knows.. "In my opinion and observation of calculus itself" The whole things works just fine, until light photons start acting "strange" as particles and waves with their own unique frequencies of "pie." Note: ""The wave function used in quantum mechanics for example uses pi extensively, in fact they make focus the use of sin and cos respectfully."" Is that why x = 0? does this mean massless something?? It makes sense to believe so, unless someone can explain x=0 when dealing with accelleration and rates of changes or x= anything 0 at all at this point.. From what I see if their is no gravitational force or any force involved our x stays put and does nothing at all?? These are "ideas" like the ideas of Eistein, Plank and the others, they seem to work and have withstood the test of time, but does not explain the most simple questions.
  6. "Maybe" I should have said: f(x) As delta x->0 towards the slope of the secant line relative to the tangent line.. But x never actually gets close to zero..I learned this 10 years ago...Does that make better sense? Book Reference: Calculus The Easy Way, Chapter 1 page 8. Sure there are places where x=0 within a curve, but I will save that for a later thread. So we should assume centuries later its handy for us??
  7. This is when things start to "Clash" and get messy and confusing...Sure there are many dialects and interpretations to calculus as there is to number theory... This still does not answer why x can never be =1, and it makes sense becuase if x =1 - dx=1 then it all =0 which is "undefined" that's the point I really want to make, it's this statement that asks, "What's the point of Calculus?" not my words rather the "rules".. It makes no sense, and I'd love to understand this..
  8. Ive studied these fields for 20 years since a child, and yet I have absolutely no understanding of its use...I'm glad to be honest becuase true scientist use caution when using ancient tools and derived quantities from who knows what...Who invented calculus anyways??? No one truly knows, thats an honest point.. However, can u show me a "real" world phyiscal example? And I think we can dissect the questions from there on.. So your saying anything connected to x is zero??? Thanks I am laughing now...lolol
  9. We are taught that calculus is all about "instantaneous changes" between 2 points, x and delta x in respect to time with x = 0 and delta x =1 For example, when we set x = 0, "are we "manipulating" time , ie stopping at a certain location " going a certain distance" as to derive the instantaneous change at that point " location" in time? If that's the case for our x = 0 "reference point" then what's the point of calculus and its "undefined location?" Another example, if x = 0 and delta x = 1, " what's the point of coordinate vectors?" example x = 3 y = 9?? Another good example, if Cartesian Space references 0 in the coordinate system -2, -3, -1, 0, 1 , 2 ,3 then what's the point of Cartesian Space itself? Take note: I'm using 0 and 1 here as interchangeable. Thanks in advance!
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.