Jump to content

Lorentz Jr

Senior Members
  • Posts

    515
  • Joined

  • Days Won

    6

Everything posted by Lorentz Jr

  1. From the thread Sending an instantaneous signal: No, it’s not. If you wish to discuss it, open your own thread on entanglement, so your misconceptions can be addressed. Could someone please do me a favor and address these misconceptions? I'm afraid I don't understand them. By "using entanglement" I meant using entangled particles to send an instantaneous signal, as the OP had asked about (or, more speculatively, possibly using whatever process underlies entanglement sometime in the future, if such a process exists and we can learn how to use it).
  2. What kind of source generated a signal and how long the signal took to reach Earth are different questions. Specifically identifying entangled particles is very, very speculative. I don't think anyone has searched for anything like that, although I suppose you could ask the people at SETI.... Using entanglement is also speculative. It's forbidden by relativity, and even quantum mechanics doesn't allow incoherent systems to violate that rule. Faster-than-light communication would require (a) that entanglement does indeed involve such communication between particles (which is still a controversial subject), and (b) that there's an as-yet-unkown way to get around the rules. The short answer is no, no one has the slightest idea of whether or how that could possibly be done.
  3. Future research will eliminate ten existing questions and introduce twenty new ones! 😁 😎 🙂
  4. Because they can't be normalized. Arguments about "waves" aside, my main complaint is that I don't think the word "diffusion" adequately describes the nature of quantum-mechanical phenomena. As I mentioned earlier, the Schrödinger equation has the same dispersion relation as spin waves in condensed matter, and I personally find that fascinating, even though most professional physicists apparently don't think about it much. I wonder what kind of spinning phenomenon might be going on in the vacuum that could implement matter and energy. 🤔
  5. Energy eigenstates are states where x and t can be separated in the time-dependent equation, so the solutions can be factored into two terms, as f(x)exp(iwt). Solutions with no potential-energy function (V(x,t) = 0) are traveling plane waves, and solutions with an infinite potential well are not dispersive. So calling the Schrödinger equation a "diffusion equation" seems misleading to me, and "wave equation" seems reasonable. I think the linear time derivative in the Schrödinger equation is misleading because its coefficient is imaginary. I think it has more in common with a real-valued second derivative from a physical or dynamical point of view, even though it superficially looks like a diffusion term. Traveling waves aren't defined in terms of oscillation, but standing waves are certainly associated with it, and classical diffusion is a completely different phenomenon, with no oscillation at all. PS: How do you edit equations here?
  6. I don't know what your definition of "wave" is (the definition above applies to equations, not their solutions), but eigenstates of the Schrödinger equation are purely oscillatory. The dispersion relation is the same as for spin waves in magnetic media. PS: Hello, Science Forums > Physics. New poster here. 🙂
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.