In a space time [math]5D[/math], the action for the brane [math]4D[/math] is:
[math] \int dx^4 \sqrt{-h}[/math]
In the Randall Sundrum the action for the hidden brane is:
[math] V_0\int dx^4 \sqrt{-h}[/math], where [math]V_0[/math] is the tension on the brane hidden.
follow the stress energy tensor
[math] T_{MN}= V_0 h_{uv} \delta^u_M \delta^v_N \delta(\phi)[/math], where [math]\phi[/math] is the extra dimention.
In other paper, where [math]T_{MN}[/math], for example in the friedman equation in http://arxiv.org/abs/hep-th/0303095v1 (page 6)...
[math] T_{00}= -\rho \delta(\phi)[/math]
[math] T_{ii}= p \delta(\phi)[/math]
the other component are zero.
I understand thar [math]\rho , p[/math] are energy density and presion
If , i use other embedding my energy stress tensor is
[math] T_{00}= - \delta(\phi)[/math]
[math] T_{ii}= \delta(\phi)[/math]
[math] T_{0 \phi}= \delta(\phi)[/math]
[math] T_{\phi \phi}= \delta(\phi)[/math]
¿can i to multiply the each component of the stress tensor by differents constants???...for example:
[math] T_{00}= - k_1 \delta(\phi)[/math]
[math] T_{ii}= k_2 \delta(\phi)[/math]
[math] T_{0 \phi}= k_3 \delta(\phi)[/math]
[math] T_{\phi \phi}= k_4 \delta(\phi)[/math]