Hi.
How is acceleration [math]a[/math] written in spherical coordinates, so that [math]a[/math] is not dependant from time but from the line element [math]ds=\sqrt{dr^2+r^2d\theta^2+r^2\sin^2\theta^2d\phi^2}[/math]
So I would like to have [math]\frac{d}{ds}[/math] instead of [math]\frac{d}{dt}[/math] in the next equation:
What is the speed at any point of a path [math] \theta = \theta(\phi)[/math] on a rough sphere. The forces that affect the moving of a point particle are the force of gravity and the force of friction.
I tried this way but I am not sure if the normal vector is right:
[math]
\mathbf{T}=\frac{dx}{ds}\mathbf{i}+\frac{dy}{ds}\mathbf{j}+\frac{dz}{ds}\mathbf{k}
[/math]
[math]
\mathbf{N}=(-\frac{dz}{ds}-\frac{dy}{ds})\mathbf{i}+(-\frac{dz}{ds}+\frac{dx}{ds})\mathbf{j}+(\frac{dx}{ ds}+\frac{dy}{ds})\mathbf{k}
[/math]
[math]
F_g = -mg \mathbf{k}
[/math]
[math]
F_n=|\textbf{F}_g\cdot\textbf{N}|=|-mg (\frac{dx}{ds} +\frac{dy}{ds}) \textbf{k}|=mg (\frac{dx}{ds} +\frac{dy}{ds})
[/math]
[math]
\textbf{F}_{friction}=-\mu F_n\textbf{T}=-\mu mg (\frac{dx}{ds} +\frac{dy}{ds}) \textbf{T}
[/math]
[math]
ma=F_g -F_{riction}
[/math]
[math]
\frac{1}{2}\frac{d(v^2)}{ds}=g \frac{dz}{ds}-\mu g (\frac{dx}{ds} +\frac{dy}{ds})
[/math]
After integrating and converting to spherical coordinates i get:
[math]
v=\sqrt{2g((\cos{\theta_0}-\cos \theta)-\mu((\cos \phi_0 \sin \theta_0 - \cos \phi \ \sin \theta)+(\sin \phi_0 \sin \theta_0 - \sin \phi \sin \theta)) )}
[/math]
What do you think about the formulas about. Have I done it wrong? I think it would be better to go in spherical coordinates but I didn't know how.
Merged post follows:
Consecutive posts mergedI found how to solve it.
We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.