[math]\mbox{f(x) and f'(x) are continuous for all x in R. (*1)} [/math]
[math]\mbox {Let a,b in R\ so\ that\ without\ the\ loss\ of\ generality } a<b.[/math]
[math]\mbox {Let x in [a,b]. (*2)} [/math]
[math]\lim_{n\rightarrow \infty} f_n(x)=\lim_{n\rightarrow \infty} n[f(x+\frac {1} {n})-f(x)]=[/math][math][t_n=1/n]=\lim_{t\rightarrow0} \frac {f(x+t)-f(x)} {t}=f'(x). \ (*3)[/math]
[math]\mbox{(*1) and (*2) and (*3) } \Rightarrow\ g(x)=|f_n(x)-f(x)| \mbox{ is continuous for all x in R.\ (*4)}[/math]
[math]\mbox{(*2) and (*4)} \Rightarrow\ \mbox {Weierstrass Theorem } \Rightarrow\[/math][math] \exists\ \max_{[a,b]} g(x)=g© \mbox { c in [a,b].\ (*5)} [/math]
[math]\mbox {(*5) and (*1) } \Rightarrow\ \forall\ x\in[a,b]\ \Rightarrow\ \sup_{[a,b]}|f_n(x)-f(x)|=|\frac {f(c+t)-f©} {t} -f'©|\rightarrow0[/math]
[math]\Rightarrow \mbox { Basic lemma for uniform convergence }[/math][math] \Rightarrow\ f_n(x) \mbox{ is uniform convergent in [a,b], where a,b are arbitrary.} [/math]
QED
[Edit] "Basic lemma for uniform convergence" is sounds little funny but I'm sure you'll understand what I meant.
[Edit] I'm afraid of having the wrong intuition about uniform convergence, I hope you will be be able to say if I understand the idea from my proof.
[Edit] If only I could prove g(x) is monotonic [such thing is possible?] then my proof would be a lot shorter, using Dini Theorem.