-
Posts
97 -
Joined
-
Last visited
Content Type
Profiles
Forums
Events
Everything posted by Doctordick
-
Regarding the supposed issue if this thread, “Occam's Razor VS Randomness”, is there no one out there who would first be willing to consider a more basic question before jumping forth to settle such a central question within their world view? Essentially, I am talking about the issue of randomness itself. If you cannot put forth the consequences of “randomness” how can you ever hope to make any uses of Ockham’s razor (the term comes from “William of Ockham” by the way)? Has anyone here even considered what an explanation of the universe would look like if the universe were absolutely and unconditionally random? You could perhaps refuse to consider the issue under the presumption that we could not exist if it were indeed absolutely and unconditionally random; however, that is not a defendable proposition as if absolutely anything could happen, our existence could certainly happen! Is there anyone here who is willing to consider such a “crackpot” idea or is it so far beyond the pale as to be unmentionable? For those who care to think for themselves, I will confess that I have already been banned “FOREVER” from the “Physicsforms.com” for posting “Crackpottery” (that appears to be their interpretation of my logic) to the Is time just an illusion? Thread. See the last page. I suspect it occurred because of the exchange between myself and one Anssi who seemed to be taking me seriously (look at the last page of that thread to see the termination circumstances). At any rate, Anssi and I have moved the discussion to Hypography.com where things appear to be progressing reasonably well. If you are interested check “What can we know of reality?” from where we first transferred the discussion. I wouldn’t bother you all except that the discussion is really about what one could logically say about a perfectly random universe. Have fun -- Dick
-
Well, that's nice; I then take it to indicate your understanding of mathematics is probably better than the average. I would very much like to get you interested in examining my logic. Meanwhile, not to take up your time but rather to clarify some of my earlier comments on this thread which I think you misunderstood. What I meant was that all “theories” are themselves data compression mechanisms. Their central purpose is to provide one with a replacement for that “gigantic archive” you mentioned. The theory allows you to discard massive amounts of that archive. One problem is, if the theory is flawed in some way, the discard might include things which should not have been discarded. (By flawed I mean that data in that discarded data could have have been used logically to impeach the theory). You see there is another issue here; not only are we unable to maintain the archive you refer to but we do not even have the capability of totally examining all the possibilities of the average theory against the archive it rests upon before we discard that actual information the theory is to reproduce. Our out is that we commonly assume future results will bring out that error if that error does indeed exist; however, that is clearly an assumption (and a bad one at that). The only intelligent out is to come up with a mechanism for assuring the theory is flaw-free; finding a way of implementing that requirement is a rather serious issue which one would think would interest any objective scientist. True, there is no other choice; however, presuming one must discard data prior to considering what constraints should apply to your theory is a rather extreme approach. One should at least examine the idea of creating a flaw-free theory from a archive which is handleable. That was one of the points I was trying to bring up. Until you can comprehend a method of creating a flaw-free theory from a small amount of information, you certainly should not go around discarding information. You should first solve that serious problem. But you are using it to avoid thinking about the problem of creating that flaw-free theory. Certainly, discarding information which would invalidate the theory if kept is not a proper scientific procedure. Here again you have grasped the wrong intent from my comment about communications. What I was trying to point out is that the very issue of understanding a language constitutes a theoretical solution to the problem of meanings and relationships. You have in your mind, a subconscious solution to the meanings of the symbols comprising that language. That theory was arrived at through several years of data interpretation (involving much data discard) and you cannot be sure your understanding is flaw-free. Why do you think languages change with time? Every generation interprets the symbols a little differently; it is actually as dynamic a process as is any. But you cannot update a theory you don't have. How do you set one up initially? If one wants to do hard science, that is the problem you need to solve first. Anything else is just a “guess and by golly” approach submitted to nature to be gleaned by evolutionary forces. So, the starting point of complete ignorance does not exist and never existed? What did the first inkling of understanding start with? Are you saying GOD handed it down as a given thing? If not, it has to start from a very specific situation: “the problem becomes one of constructing a rational model of a totally unknown universe given nothing but a totally undefined stream of data which has been transcribed by a totally undefined process”. I say that is the unique objective starting point and the scientific community's refusal to look at it is a religious bias. Is that to be taken to mean you are no longer interested? That would sort of end this exchange wouldn't it. For your information, it's already been done; I did it over forty years ago. To me that sounds an awful lot like a religious defense of a refusal to look. If that is really the case (and I hope it isn't), I can only say that ignorance is its own reward and I am sorry to lose you. (I'll probably be banned from this forum for this but I really don't think it really makes any difference.) The powers that be immediately locked the last thread I posted to less than an hour after Severian's posted a succinct intellectual rebuttal of my logic (which I am sure is the position the academy would back): I suppose that was so I could not point out the errors in that post. My last comment before the lock was: I think they were afraid someone might have been interested. It has been fun -- Dick
-
Hi fredrik, you couldn't be the same character I am talking to elsewhere could you? I have been reading your posts and they seem quite rational. I thought I might just comment on this one. It should be clear to you that, whatever theory is put forth, it is clearly influenced by “undiscarded” information only: i.e., you have the cart on the wrong side of the horse (so to speak). Any theory must be established by information available; anything else is simply beside the point. This is an excellent observation. It seems to me that you are seeing “current theory” as a data compression mechanism which is an excellent perspective. (It was this line that made me think you were the person I was talking to: "even a particle".) But, back to your statement: in essence, this is not a fundamental issue at all; it is merely a statement concerning the complexity of the solutions obtainable by that living organism (a matter rather different than the problem being talked about). I like your perspective quite a lot. We might really be able to communicate. Have fun -- Dick
-
A simple yet profound geometric proof.
Doctordick replied to Doctordick's topic in Applied Mathematics
The underlying object is "rigid", not "ridged" as stated above! Sorry about that. Hope it didn't upset anyone. Oh dear, I just noticed another stupid typographical error. I apparently had the shift key down and inserted an equal sign instead of a plus sign in the latex expression of r_n. The first of the solutions of the pair of equations should be [math]r_n = \sqrt{\frac{n}{2(n+1)}} [/math] not [math]r_n = \sqrt{\frac{n}{2(n=1)}} [/math] as shown. I also used "cut and paste" to move the expression to a later function yielding a second misrepresentation. Again, I apologize. The forum should allow editing of posts beyond the initial period. Have fun -- Dick -
If this is indeed what "strong emergence" means to the academic community, then I think one can confidently conclude that "strong emergence" does not exist; if you like subtle thoughts, see my paper A Universal Analytical Model of Explanation Itself". With regard to "weak emergence" (that is with regard to the definition of "weak emergence") I feel it can also be dispensed with via the following proof. That is, emergence is emergence and there is nothing either weak or strong about it! People begin to think about weak "emergence" when what they are looking at is more complex than what they can deduce from "known laws". What they seem to forget is that physics is applicable only to problems which can be reduced to one body problems by some procedure. I am of the opinion that the following proof is of great significance when one goes to consider "emergent" phenomena and the complexity achievable from simple constructs. The proof concerns a careful examination of the projection of a trivial geometric structure on a one dimensional line element. The underlying structure will be an n dimensional ridged entity defined by a collection of n+1 points connected by lines (edges) of unit length embedded in an n dimensional Euclidean space (i.e., a minimal n dimensional equilateral polyhedron; the generalized concept of a higher dimensional equilateral triangle with unit edges). The universe (the collection of information to be analyzed) of interest will be the projection of the vertices of a that polyhedron on a one dimensional line element. The logic of the analysis will follow the standard inductive approach: i.e., prove a result for the cases n=0, 1, 2 and 3. Thereafter prove that if the description of the consequence is true for n-1 dimensions, it is also true for n dimensions. The result bears very strongly on the range of complexity of "emergent" phenomena given an extremely simple source. First of all, the projection will consist of a collection of points (one for each vertex of that polyhedron) on the line segment of interest. Since motion of that polyhedron parallel to the given line segment is no more than uniform movement of every projected point, we can define the projection of the center of the polyhedron to be the center of the line segment: i.e., linear motion of the polyhedron has no real consequences. Furthermore, as the projection will be orthogonal to that line segment and the n dimensional space is Euclidean, any motion orthogonal to that line segment introduces no change in the projection whatsoever. It follows that the only motion of the polyhedron which provides any interesting changes in the distribution of points on the line segment will be rotations of the polyhedron in the n dimensional space. The assertion which will be proved is that every conceivable distribution of points on the line segment is achievable by a specifying a particular rotational orientation of the polyhedron relative to the line segment of interest. Before we proceed to the proof, one issue of significance must be brought up. That issue concerns the scalability of the distribution. I referred to the collection of points on the line segment as the "universe of interest" as I want the student to think of that distribution of points as a universe: i.e., any definition of length must be arrived at via some defined characteristic of the the distribution itself or some subset of the distribution. Thus any two distributions which differ only by a scale factor will be considered to be identical distributions. Case n=0 is trivial as the polyhedron consists of one point (with no edges) and resides in a zero dimensional space. It's projection on the line segment is but one point (which, from the above constraints, is at the center of the line segment by definition) and no variations in the distribution of any kind are possible. Neither is it possible to define length within that "universe". It follows trivially that every conceivable distribution of a lone point on a line segment where the center of the distribution is defined to be the center of the line segment is achievable by a particular rotational orientation of the polyhedron (of which there are none). Thus the theorem is valid for n=0 (or at least can be interpreted in a way which makes it valid). I said it was trivial; it is only here for continuity in that it lets me begin with one point. Case n=1 is also trivial as the polyhedron consists of two points and one edge residing in a one dimensional space. Since the edge is to have unit length, one point must be a half unit from the center of the polyhedron and the other must be a half unit from the center in the opposite direction. Since rotation is defined as the trigonometric conversion of one axis of reference into another, rotation can not exist in a one dimensional space. It follows that our projection will consist of two points on our line segment. We can now define both a center (defined as the midpoint between the two points) and a length (define it to be the distance between the two points) in this universe but there is utterly no use for our length definition because there are no other lengths to measure. It follows trivially that every conceivable distribution of two points on a line segment (which is one) is achievable by a particular rotational orientation of the polyhedron (of which there are none). Thus the theorem is valid for n=1. Case n=2 is the first case which is not utterly trivial. Fabrication of an equilateral n dimensional polyhedron is not (in general) a trivial endeavorer. In order to keep our life simple, let us construct our equilateral polyhedron in such a manner so as to make the initial orientation of the lower order polyhedron orthogonal to the added dimension. Thus we can move the lower order entity up from the center of our new coordinate axis and add a new point on the new axis below the center. In this case, the coordinates of previous polyhedron (as displayed in the n Euclidean space) remain exactly what they were for the n-1 established coordinates and are all shifted by the same distance from zero along the new axis. The new point has a position zero in all the old coordinates (it is on the new axis) and an easily calculated position on in the negative direction on that new axis (that distance must be equal to the new radius of the vertices of the old polyhedron as measured in the new n dimensional space). The proper movement is quite easy to calculate. Consider a plane through the new axis and a line through any vertex on the lower order polyhedron. If we call the new axis the x axis and the line through the chosen vertex the y axis, the y position of that vertex will be the old radius of the vertex in the old polyhedron. The new radius will be given by the square root of the sum of the old radius squared and the distance the old polyhedron was moved up in the new dimension squared. That is exactly the same distance the new point must be from the new center. Assuring the new edge length will be unity imposes a second Pythagorean constraint consisting of the fact that the old radius squared plus (the new radius plus the distance the old polyhedron was moved up) squared must be unity. [math]r_n = \sqrt{x_{up}^2 + r_{n-1}^2}[/math] and [math] 1 = \sqrt{r_{n-1}^2 + (x_{up} + r_n)^2 }[/math] The solution of this pair of equations is given by [math]r_n = \sqrt{\frac{n}{2(n=1)}} [/math] and [math]r_{up} = \frac{1}{\sqrt{2n(n+1)}}[/math] The case n=0 was a single point in a zero dimensional space. The case n=1 can be seen as an addition of one dimension x_1 (orthogonal to nothing) where point #1 was moved up one half unit in the new dimension and a point #2 was added at minus one half in the new dimension (both the new radius and "distance to be moved up" are one half). The case n=2 changes the radius to one over the square root of three and the line segment (the result of case n=1) must be moved up exactly one half that amount. A little geometry should convince you that the result is exactly an equilateral triangle with a unit edge length. Projection of this entity upon a line segment yields three points and the relative positions of the three points are changed by rotation of that triangle. In this case, we have two points to use as a length reference and a third point who's distance from the center can be specified in terms of that defined length reference. Using those definitions, two of the points can be defined to be one unit apart and the third point's position can vary from any specific position from plus infinity to minus infinity. The infinities are approached when the edge defined by the two vertices being used as our length reference approaches orthogonality to the line segment upon which the triangle is being projected (in which case the defining unit of measure falls towards zero). Plus infinity would be when the third point is on the right (by convention) and minus infinity when the third point is on the left (by common convention, right is usually taken to be positive and left to be negative). It thus follows that every conceivable distribution of three points on a line segment is achievable by a particular rotational orientation of the polyhedron (our triangle). Thus the theorem is valid for n=2. Case n=3 consists of a three dimensional equilateral polyhedron consisting of four points, six unit edges and four triangle faces: i.e., what is commonly called a tetrahedron. If you wish you may show that the radius of vertices is given by one half the square root of three halves and the altitude by the radius plus one over two times the square root of six (as per the equations given above). In examining the consequences of rotation, to make life easy, begin by considering a configuration where a line between the center of our tetrahedron and one vertex is parallel to the axis of projection on our reference line segment. Any and all rotations around that axis will leave that vertex at the center of our line segment and actually consist of rotation in the plane of the face opposite to that point. Essentially, except for that particular point, we obtain exactly the same results which were obtained in case n=2 (that would be projection of the triangle face opposite the chosen vertex). Using two of the points on that face to specify length, we can find an orientation which will yield the third point in any position from minus infinity to plus infinity while the forth point remains at the center of the reference line segment. Having performed that rotation, we can rotate the tetrahedron around an axis orthogonal to the first rotational axis and orthogonal to the line on which the projection is being made. This rotation will end up doing nothing to the projection of the first three points except to uniformly scale their distance from the center. Since we have defined length in terms of two of those points, the referenced configuration obtained from the first rotation does not change at all. On the other hand, the forth point (which was projected to the center point) will move from the center towards plus or minus infinity depending on the rotation direction (the infinite positions will correspond to the orientation where the line of projection lies in that face opposite the fourth point: i.e., the scaled reference distance approaches zero). It follows that all possible configurations of the four points in our projection can be reached via rotations of the tetrahedron and the theorem is valid for n=3. The final part of the proof (if it is true for an n-1 dimensional figure, it is true for an n dimensional figure) requires a little thought: Since the space in which the n dimensional polyhedron is embedded is Euclidean, we can specify a particular orientation of that polyhedron by listing the n coordinates of each vertex. That coordinate system may have any orientation with respect to the orientation of the polyhedron. That being the case, we are free to set our coordinate system to have one axis (we can call it the x axis) parallel to the line on which the projection is to be made. In that case, except for a scale factor (which must be obtained from the distribution), a list of the x coordinates of each point correspond exactly to the apparent positions of the projected points on our reference line. Thus I will henceforth use the x axis in the n dimensional space as a surrogate for my reference line segment. If the theorem is true for an n-1 dimensional polyhedron, there exists an orientation of that polyhedron which will correspond to any specific distribution of n points on a line (where scale is established via some procedure internal to that distribution of points). If that is the case, we can add another axis orthogonal to all n-1 axes already established, move that polyhedron up along that new axis a distance equal to [math]x_n = \frac{1}{\sqrt{2n(n+1)}}[/math] and add a new point at zero for every coordinate axis except the nth axis where the coordinate will be set to [math]-r_n = x_n = - \sqrt{\frac{n}{2(n+1)}}[/math]. The result will be an n dimensional equilateral polyhedron with unit edge which will project to exactly the same distribution of points obtained from the previous n-1 dimensional polyhedron with one additional point at the center of our reference line segment. If our n dimensional polyhedron is rotated on an axis perpendicular to both the reference line segment and the nth axis just added, the only effect on the original distribution will be to adjust the scale of every point via the scale factor [math]cos\theta[/math]. That is, the new x_i is obtained by [math]x_{1i New} = x_{1iOld}cos\theta + \sqrt{\frac{n}{2(n=1)}}sin\theta [/math], where theta is the angle of rotation (notice that the sin term yields a simple shift exactly the same for all points which is quite meaningless as far as the pattern of those points is concerned). Meanwhile, the x_1 position of the added point will be given exactly by [math]-r_n sin \theta[/math] (the cos term vanishes as it started on the origin of x_1). Once again, the added point may be moved to any position between plus and minus infinity which occur at plus and minus ninety degrees of rotation. Once again, the length scale is to be established via some procedure internal to the distribution of points. It follows that the theorem is valid for all possible n. QED There is an interesting corollary to the above proof. Notice that the rotation specified in the final paragraph changes only the components of the collection of vertices along the x axis and the nth axis. All other components of that collection of vertices remain exactly as they were. Since the order used to establish the coordinates of our polyhedron is immaterial to the resultant construct, the nth axis can be a line through the center of the polyhedron and any point except the first and second (which essentially establish the x axis under our current perspective). It follows that for any such n dimensional polyhedron for n greater than three (any x projection universe containing more than four points) there always exists n-2 axes orthogonal to both the x and y axes. These n-2 axes may be established in any orientation of interest so long as they are orthogonal to each other and the x,y plane. Thus, by construction, for any point (excepting the first and the second which establish the x axis) there exists an orientation of these n-2 axes such that one will be parallel to the line between that point and the center of the polyhedron. Any rotation in the plane of that axis and the y axis will do nothing but scale the y components of all the points and move that point through the collection, making no change whatsoever in the projection on the x axis. We can go one step further. Within those n-2 axes orthogonal to the x and y axes, one can choose one to be the z axis and still have n-3 definable planes orthogonal to both the x and the y axes. That provides one with n-3 possible rotations which will leave the projections on the x and y axes unchanged. Since, in the construction of our polyhedron no consequences of rotation had any effect until we got to rotations after addition of the third point, these n-3 possible rotations are sufficient to obtain any distribution of projected points on the z axis without altering the established projections on the x and y axes. Thus it is seen that absolutely any three dimensional universe consisting of n+1 points for n greater than four can be seen as an n dimensional equilateral polyhedron with unit edges projected on a three dimensional space. That any means absolutely any configuration of points conceivable. Talk about "emergent" phenomena, this picture is totally open ended. Any collection of points can be so represented! Consider the republican convention at noon of the second day (together with every object and every person in the rest of the world; and all the planets; and all the galaxies ...) where the collection of the positions of all the fundamental particles in the universe is no more than a projection of some n dimensional equilateral polyhedron of unit size on a three dimensional space. Talk about emergent phenomena! On top of that, if nothing in the universe can move instantaneously from one position to another, it follows that the future (another distribution of that collection of positions of all the fundamental particles in the universe) is no more than another orientation of that n dimensional polyhedron and the evolution of the universe in every detail must correspond to continuous rotation of that figure. Think about that view of a rather simple geometric construct and the complex phenomena which is directly emergent from the fundamental perspective. Have fun -- Dick
-
Question about the age of the universe
Doctordick replied to bobosmokey's topic in Astronomy and Cosmology
I challenge anyone to prove that any event has a cause! It is your explanations of events which requires a cause! Please explain what is wrong with the explanation "what is, is what is and there is nothing more to be said". Have fun -- Dick -
Ah, but efficiency can be a dangerous thing. You should always keep in mind that a 100% efficient operation will collapse if a single element fails. A little wiggle room is a valuable asset. Have fun -- Dick