Jump to content

theuniverse

Members
  • Posts

    2
  • Joined

  • Last visited

Everything posted by theuniverse

  1. I'm having troubles coming up with the formula.. so what do you think about that: S(t) = S(initial)*e^rt + (500 + 5t). I use S(initial)*e^rt to describe the change to the initial amount, plus (500 + 5t) for the additional savings. Edit: since t is in years I think (500 + 5t) should actually be (6000+60t)...
  2. 1. The problem: A new savings account with an initial balance of zero is made. You save money continuously, at a rate of $500 per month. Also, every month you plan to increase this rate by $5. you've found a bank account that pays continously compounded interest at a rate of 8% per year. Estimate how long it will take for you to save one million dollars. 2. The attempt at the solution: I decided to take care of the saving rate first: since my interest is per year I decided to convert the savings to a yearly rate as well where k=500*12=6000, then I had to take care of the increments so I write it as 6000+60t where 60 is found by 5*12, and the t is in years so that every year 60$ are added to the initial saving rate. I then tried to use the formula: S(t) = S(initial)*e^rt + [(k+60t)/r][(e^rt)-1)] I subbed in my values, and 1 million for S(t) but the problem is that I can't isolate for t and always end up having e^0.08t - t = some number. Is there a different way I should approach this problem? Thanks!
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.