Lagrange Problem
max [math] y = x_1^2 + x_2^2[/math] such that [math] \frac{x_1^2}{25} + \frac{x_2^2}{9} -1 =0 [/math]
[math] \frac{df}{dx_1} = 2x_1 + \frac{2x_1\lambda}{25}[/math] (1)
[math] \frac{df}{dx_2} = 2x_2 + \frac{2x_2\lambda}{9}[/math] (2)
[math] \frac{df}{d\lambda} = \frac{x_1^2}{25} + \frac{x_2^2}{9} - 1 [/math] (3)
Dividing equation [math] \frac{1}{2} [/math]
[math] \frac{x_1}{x_2} = \frac{9*x_1}{25*x_2} [/math] As you can see the x_1 and x_2 just cancels out. Do you know what the issue is? I tried using a quadratic, but it still has the lambda in it, so I cannot solve it that way. How can I solve this one using the Lagrange?