Hello,
My knowledge of abstract algebra beyond linear vector spaces is very limited. My problem is inspired from the (not very well-known) triangular inequality between angles of a tetrahedron (see for example http://convexoptimization.com/wikimization/index.php/Fifth_Property_of_the_Euclidean_Metric):
[latex]
\left| \widehat{x,y}-\widehat{y,z} \right| \leq \widehat{x,z}\leq\widehat{x,y}+\widehat{y,z}
[/latex]
where x,y,z are three vectors and [latex]\widehat{x,y}[/latex] is the angle formed by the vectors x,y.
I am looking for a way to abstract this into some algebra of vertices. Say a vertex is the tuple [x,y], we would need to define some "addition" operator in a transitive way so that [x,y]+[y,z] = [x,z], and we would define a norm as [latex]\| {[x,y]} \| = \widehat{x,y}[/latex]. The triangular inequality above would then read in the familiar way:
[latex]
\left| \| [x,y] \| - \| [y,z] \| \right| \leq \| [x,y] + [y,z] \| \leq \| [x,y] \| + \| [y,z] \|
[/latex]
Does this look familiar to anyone?
Thanks in advance for any pointers.
p.