Hi
It is well knowm by the theorem of the reminder that:
[math]D(x)=d(x)q(x)+r(x)[/math]
In this example:
.......................If [math](2x^{119}+1)/(x^2-x+1)[/math] then figure out the reminder.
Therefore I can afirm that the reminder has the form of :[math]r(x)=ax+b[/math],
because [math]d(x)>r(x)[/math] and [math]d(x)=x^2-x+1[/math]
And the original problem could be written as:
..................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b[/math].........(I)
To this point I need two solution of:[math]d(x)=0[/math]
so I can find the values of a and b.
According to what I think:
...............If [math](2x^{119}+1) = D(x)[/math] and [math]d(x)=(x^2-x+1)[/math]
so in order to find the solution :[math] x^2-x+1=0[/math]......(II)
.............................[math](x+1)(x^2-x+1)=0[/math]
....................................[math]x^3+1=0 [/math]
..............................................[math]x^3=-1 [/math]........(III)
.................................. replacing (III) on [math]D(x)[/math]:
....................................[math]2(-1)x^2+1= -2x^2+1 [/math]
.................................but in (II) we'll have: [math] -x^2=-x+1[/math]
......................................so [math]-2x^2+1=-2x+3[/math]
........................................finally [math]-2x+3=r(x) [/math]
........................................[math]ax+b=-2x+3[/math]
I just found the above anwer substituting values for another, but really would like to know
if I can find it in the form (I) below:
...................................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b.............(I)[/math]
........................................and if I try to fatorise the way I did:
..........................................[math]2x^{119}+1=(x^2-x+1)(x+1)(x+1)^{-1}q(x)+ax+b[/math]
...........................................[math]2x^{119}+1=(x^3+1)(x+1)^{-1}q(x)+ax+b[/math]
.................................................When I change x=-1
............................................... the expression: [math](x+1)^{-1}[/math] has no meaning.
I will appretiate if anyone can remark me if I'm making or if I made a mistake in my logic(method)
Thanks in advance, and excuse me if my coding is wrond.