There are three balls(one red, one blue, and one yellow). Each ball has a mass of 1kg. The red and blue balls are at rest with respect to each other, but are moving with respect to the yellow ball. From a reference frame in which the yellow ball is at rest, the red ball has the energy from mass, but since the red ball is moving, it also has kinetic energy. Now, let's move our reference frame to one in which the blue ball is at rest. The red ball still has the same energy due to mass, but, since it is at rest relative to the blue ball, has no kinetic energy. The red ball has more energy in the reference frame of the yellow ball than it does in the reference frame of the blue ball. Thus energy is dependent on the reference frame and is not conserved from frame to frame. Mass, however is the same in every frame of reference. If we consider the three balls as a system and use the same reference frames, we get different values for the total energy of the system. In the reference frame in which the yellow ball is at rest, there is a certain amount of energy in the system from the mass of all three balls and the kinetic energy of the red ball and the blue ball. In our other reference frame, we have the energy from the mass of all three balls and the kinetic energy of just the yellow ball.
As stated, each ball has a mass of 1kg. In the reference frame where the red and blue balls are at rest, the yellow ball is observed to be moving at 100m/s with respect to the red and blue balls. In the reference frame where the yellow ball is at rest, the red and blue balls are each observed to be traveling at 100m/s with respect to the yellow ball.
How much [acr=Kinetic Energy]KE[/acr] does the system have?