Please see the updated version:
Under what conditions can we state the following?
\max_{\theta>0} F \left( \theta \right)= \int_{\rho_{min}}^{\rho_{max}} g \left( \rho \right)\pi\left(\rho,\widehat{\theta \left( \rho \right)} \right)d\rho
where,
F\left ( \theta \right )=\int_{\rho_{min}}^{\rho_{max}}g\left(\rho \right )\pi\left(\rho,\theta \right)d\rho
and
\widehat{\theta\left( \rho \right)} is the argument that maximize \pi(\rho,\theta) with respect to \theta
Let \rho_{min}=0 and \rho_{max}=1. Assume also that g(\theta) and \pi(\rho,\theta) are proper unimodal densities of \rho and the parameter \theta>0
Alternatively, we can state the problem in the following way: Determine the conditions that satisfy
\max_{\theta>0} F \left( \theta \right)= \int_{0}^{1} g \left( \rho \right)\max_{\theta>0}(\pi\left(\rho,\theta \right))d\rho