Please see the updated version:
Under what conditions can we state the following?
[latex]\max_{\theta>0} F \left( \theta \right)= \int_{\rho_{min}}^{\rho_{max}} g \left( \rho \right)\pi\left(\rho,\widehat{\theta \left( \rho \right)} \right)d\rho[/latex]
where,
[latex]F\left ( \theta \right )=\int_{\rho_{min}}^{\rho_{max}}g\left(\rho \right )\pi\left(\rho,\theta \right)d\rho[/latex]
and
[latex]\widehat{\theta\left( \rho \right)}[/latex] is the argument that maximize [latex]\pi(\rho,\theta)[/latex] with respect to [latex]\theta[/latex]
Let [latex]\rho_{min}=0[/latex] and [latex]\rho_{max}=1[/latex]. Assume also that [latex]g(\theta)[/latex] and [latex]\pi(\rho,\theta)[/latex] are proper unimodal densities of [latex]\rho[/latex] and the parameter [latex]\theta>0[/latex]
Alternatively, we can state the problem in the following way: Determine the conditions that satisfy
[latex]\max_{\theta>0} F \left( \theta \right)= \int_{0}^{1} g \left( \rho \right)\max_{\theta>0}(\pi\left(\rho,\theta \right))d\rho[/latex]