Yo have reason, in the first i think as follow
(a) Proof
Assume that [latex]a[/latex] is the least element of [latex]B[/latex] in [latex]R^{-1}[/latex], then
[latex]\forall x\in{B},a\leq{x}[/latex]
Now, for [latex]R[/latex] is
[latex]\forall x\in{B},x\leq{a}[/latex]
Hence [latex]a[/latex] is the greatest element of [latex]B[/latex] in [latex]R[/latex]. The reciprocal proof is similary...
(b) Proof
For Supremum...
Assume that [latex]a[/latex] is the supremum of [latex]B[/latex] in [latex]R^{-1}[/latex], then
[latex]\forall x\in{B},x\leq{a}[/latex]
For R is
[latex]\forall x\in{B},a\leq{x}[/latex]
This prove that [latex]a[/latex] is lower bound of [latex]B[/latex] in [latex]R[/latex]. Now only remains to prove that [latex]a[/latex] is the mininum lower bound...
How i prove this?
Good day