Greg H.
Senior Members-
Posts
1266 -
Joined
-
Last visited
Content Type
Profiles
Forums
Events
Everything posted by Greg H.
-
See also: Water Intoxication
-
You can use cancellation to simplify even when there is nothing to solve - indeed when you have no equals mark at all. For example Simplify [math]\frac {2x-2y}{x-y}[/math] By factoring out the two, it's possible to show that this is really just two, dressed up with some extra bits. But I didn't solve anything. There was no equation here, so PEDMAS doesn't even come into play. All I did was cancel out the parts that don't affect the actual value. Cancellation can also be combined with factoring to reduce fractions to more understandable values. Par exemple [math]\frac {99}{144}[/math] By factoring, I can remove a 3 from both values, and by cancellation I can drop the 3s. [math]\frac {33 \times 3}{48 \times 3}[/math] [math]\frac {33}{48}[/math] But wait, I can do that again. [math]\frac {11 \times 3}{16 \times 3}[/math] [math]\frac {11}{16}[/math] Seriously, I'm flabbergasted that you're literally trying to redefine division, while (seemingly) unable to grasp some of the more simple concepts of math itself.
-
PEDMAS doesn't apply until I start trying to solve the equation, IOW actually trying to work the problem. I'm simplifying the equation, not solving it at this point Factoring and cancellation can occur outside of a standard PEDMAS approach, in an effort to make the problem simpler prior to solving it.
-
These two posts, if you will forgive me for saying so, show that you have a lot to learn about how math currently works, and they also explain why we're repeatedly covering the same ground with you. The steps involved in my example are basic first year algebra involving reduction and cancellation - I would expect a first year college or university student to understand these steps and how to apply them before they step foot on a campus. For the record, I am well aware that 2 = 1 is a false statement. The example given shows the dangers inherent in trying to make division by zero a defined operation. You end up with nonsensical answers.
-
The fact that you don't know how I did simple algebra really makes me question your ability to do math. I encourage you to read Imfataal's explanation of it to see where the variables went - they didn't just disappear (well, they did, but in a mathematically viable way). But they aren't. According to the rules of math, 2 * 3 is exactly the same 3 * 2, because if they aren't, multiplication breaks down. As has been pointed out to you multiple times. And while you keep saying they aren't the same, you've never given anyone a good reason why they aren't the same, except in your version of multiplication. Which is fine, except that your version isn't the commonly accepted version, and you haven't really provided anything approaching a thorough enough explanation to show us why it should overturn the version that's worked just fine for thousands of years just because you don't accept that you can't divide by zero.
-
And this is exactly the issue I have - you have to quantify your answer with extraneous information that isn't required under the present mathematical system. Under the present system, I don't have to quantify the answer is any way. I can look at the question and immediately know what the answer means. It also doesn't help that the answer changes meaning when a zero is involved - this also increases the complexity of the system, without providing any additional benefit, since the end result is the same. I know I'm not moving, the velocity value tells me this - I shouldn't need to clarify the answer to indicate it. Let me give you another rather famous example of what happens when you try and divide by zero. [math]a = b [/math] [math]a + a = a + b [/math] [math]2a = (a + b) [/math] [math]2a -2b = a + b - 2b [/math] [math]2(a - b) = a + b - 2b [/math] [math]2(a - b) = a - b [/math] [math]2 = 1 [/math]
-
We're not multiplying, we're dividing. Now, according to your axioms, which, if I am quoting this right, yield the following results So if I have a 50 meter room to cross, at 0 meters/second, the time required can be determined by the formula. [math]t = \frac {d}{v}[/math] Inserting the numbers from my simple example, we get [math]t = \frac {50m}{0ms^{-1}}[/math] Cancelling out all the unnecessary measures, we're left with [math]t = \frac {50}{0}[/math] seconds. According to your statements, a/0 = a, so then 50/0 = 50 seconds. Which means it takes me 50 seconds to cross a room when I'm not moving at all. Awesome. But wait - 50 meters is roughly 164 feet. And if I'm moving 0 meters per second, then I am also moving 0 feet per second. So it takes me 164 seconds to cross the room if we measure it in feet. Even though it's the same room. So is it 50 seconds(meters), or 164 seconds (feet), or 54 seconds (yards), or 5000 seconds (centimeters). This is just one example of why division by zero doesn't work. It gives nonsense answers, like I can cross a room by not moving, but the time it will take depends on the unit you use to measure the room. Well, at least you were right about not crossing the room instantly. This is the point at which I usually refer people to my signature and say If the predictions of your theory do not match reality, it is not reality that is wrong. In this case, I will simply say - you cannot cross a room by not moving (relative to the room), no matter what your "math" tells you.
-
So by not moving, I can cross the room instantly? Wow. My morning commute is about to get a lot faster.
-
Not everything worth fighting for is a right. I would fight to save my marriage (were it in trouble) but that doesn't mean I have the right to keep it (or even to be married in the first place). So which question are you trying to answer - what's worth fighting for, or what rights are worth fighting for?
-
I'll agree that the inference may have exceptions. With a very few exceptions, the same could probably be said of every inference. (You see what I did there?). Fortunately for us, the French Academy aren't the only chaps doing science then, huh? Suppressing scientific knowledge is incredibly hard, because anything one person can discover, another person can discover as well - and it only takes one person to publish to spread that knowledge. It is exponentially more difficult in modern times when ideas can be spread so rapidly to a wide audience. That's the reason "I'm being suppressed" carries so little weight as an argument. Has it happened in the past? Sure, and it wasn't always the scientific community doing the suppressing. Could it happen now? If we're dealing in absolute probabilities, then yes, it is possible. Is it likely? No, not really. Further, reading about the incident you mentioned seems more a combination of either misunderstanding or misapplying the science and significant group think on the part of the scientific community, rather than the outright suppression of an idea. Indeed, the scientific community of the time, investigated the claim using the methods available to them, and published results based on those investigations. That is called doing science. When later investigation and experimentation overturned the previous findings, this wasn't a case of throwing off the yoke of suppression, but a case of the scientific method doing what it does - finding the truth based on the available evidence, and adapting to match updated evidence.
-
A bonus is never a right. It's a bonus - it doesn't matter how long you received it. Unless the company is contractually obligated to provide it, you have no right to expect it, For example: My employment contract states that I am entitled to a bonus of a certain percentage of my yearly salary, based on certain criteria. If I meet those criteria, then the company is legally bound to pay me that bonus. If I don't, then they aren't (and won't). That doesn't make the bonus a right - it's simply part of the payment under that particular contract. Let's make sure we aren't conflating "Things I am legally entitled to" with "My rights". While I am legally entitled to my rights, not all the things I am legally entitled to are rights.
-
What do you consider the difference to be?
-
I haven't been following this discussion from the beginning, but anytime someone plays the "Mainstream science is trying to keep me from telling you this!" card, my bunk-o-meter immediately nudges into the "Suspicious" zone. You realize that properly expanding or overturning a mainstream theoretical model with a better, more accurate model is one reason they hand out Nobel Prizes, right? Or that it would take a worldwide collusion of people who are, at the end of the day, in competition with each other for research funding to suppress a valid scientific idea? Given the choice between "Science is suppressing my ideas to protect their monopoly on knowledge" and "I'm wrong.", can you guess which one sounds more likely?
-
I'm still waiting for the decimal representation and an answer to how long it will take you to cross the room. Here's another one, while I'm at it. A sawmill has 75 logs that need to milled into lumber. It takes 2 hours for one man to mill one log into 25 boards and 2 posts. How many hours will it take 0 men to mill 75 logs?
-
Dude - 3 is a number. It's the number of times you would add 2 to itself in that problem. Alternatively, I could also express it as 3 + 3, without changing the original problem. See what I did there? 2 * 3 can be written as 2+2+2 or 3+3. They're interchangeable, and it doesn't matter which one I use, I get the same answer. And you're not trying to change the definition of multiplication, but of division, which while it may feel like the same thing, it's really not. Do this for me. Convert 1/0 to a decimal value. Like 1/1 = 1 1/2 = 0.5 1/3 = 0.3333333... 1/4 = .25 Notice something? As the denominator gets larger, the resulting decimal gets smaller. Which means that if we reduce the value from 1/1 to 1/0 the result should be larger than 1. So what is that value? As another example Lets say I need to cross a room that's 50 meters wide, and I have a velocity of 0 m/s. How long does it take me to cross the room?
-
It's not a simpler definition of multiplication - it IS the definition of multiplication. And neither of them are "spaces". 2 * 3 literally means "2 + 2 + 2" just like 6 / 3 can be expressed as "How many times can I subtract 3 from 6" (the answer being 2). What you're trying to do is 6/0 or "How many times can I subtract 0 from 6?" and come up with some answer other than "An infinite number of times.". And that's why you're wrong - because I can subtract 0 from 6 until the sun dies, and I still won't have found the answer to the question. All your axiom does is break the definition of division in favor of some system that's not easier to use, it just makes things less clear.
-
I know from experience that skunks and raccoons will also eat cultivated melons, including watermelons, cantaloupe, and similar. I don't think 100% of the seeds survive, but you don't need 100% fecundity to get new plants. I think everyone has, at some point.
-
Given [math] \frac {x}{0} = x [/math] [math] \frac {x}{1} = x [/math] Then we can say that [math] \frac {x}{0} = \frac{x}{1} [/math] Since we know that x = x, and the two fractions are equal, then 0 must be equal to 1, unless you're changing the definition of equals. (And I know I said I wasn't coming back to this thread, but this thread has reached hitherto unplumbed levels of what comes out the south end of a north facing cow.)
-
Probability of being alive
Greg H. replied to Yoseph's topic in Evolution, Morphology and Exobiology
But the probability of you being me is much lower. -
No, the pie is one equal piece. That aside, you've proven time and again, you're not actually listening to the arguments against your topic, you're simply waving your hands and saying look over here! This is supposed to be a discussion, not a demonstration of verbal sleight of hand. Have a good day. I am now withdrawing from this thread. (Side note: That doesn't mean you're right. Just that I've recognized the futility of trying to continue this discussion with you). This thread is now about the Greek Financial crisis, and how we can solve it with apple pie.
-
I love how you completely skipped over pretty much every point I made, and made yourself look silly in the process. Just do this for me. All I ask is for you to divide a pie into 0 equal pieces. Take your time. I'll wait.
-
The problem is not that the question yields multiple answers. The question n/0 yields literally an infinite number of answers. There are so many answers that having the answer does not, in any way, help you better understand the problem. Here's the example I give people when they ask me this question. Take a pie. Now, divide it into 0 parts without destroying the pie. There may be some systems of mathematics where division by 0 is defined differently than it is in everyday algebra and arithmetic. But by and large, the answer is undefined (or indeterminate) Actually you have done the equivalent of multiplying and dividing by 1, not 0. They do once they come to grips with the fact that 0 isn't really a value. It's a lack of value. I had that epiphany when I starting learning binary and came to realize that the 0s in binary numbers are just placeholders for numbers that aren't there.
-
Do you really kill mountain lions in US Canada
Greg H. replied to zacocom's topic in Ecology and the Environment
You're creating a false dichotomy. You can in fact both need to hunt and enjoy hunting. They are not mutually exclusive. I have no idea what you're trying to say. -
Do you really kill mountain lions in US Canada
Greg H. replied to zacocom's topic in Ecology and the Environment
All we can empirically say is that death is cessation of the chemical processes we refer to as being alive. We can no more scientifically prove what happens after death than we can prove what happened before the beginning the of the universe.