Jump to content

henry123

Members
  • Posts

    2
  • Joined

  • Last visited

Everything posted by henry123

  1. which enzyme adds the poly A tail the most efficiently? 1- eif4 2- PABP II 3- PABP I 4- poly A polymerase
  2. Please give me a hand in interpreting in close to layman's tems this journal.....Thanks Regulation of D-cyclin translation inhibition in myeloma cells treated with mammalian target of rapamycin inhibitors: rationale for combined treatment with extracellular signal–regulated kinase inhibitors and rapamycin Abstract We have shown that heightened AKT activity sensitized multiple myeloma cells to the antitumor effects of the mammalian target of rapamycin inhibitor CCI-779. To test the mechanism of the AKT regulatory role, we stably transfected U266 multiple myeloma cell lines with an activated AKT allele or empty vector. The AKT-transfected cells were more sensitive to cytostasis induced in vitro by rapamycin or in vivo by its analogue, CCI-779, whereas cells with quiescent AKT were resistant. The ability of mammalian target of rapamycin inhibitors to down-regulate D-cyclin expression was significantly greater in AKT-transfected multiple myeloma cells due, in part, to the ability of AKT to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. Similar AKT-dependent regulation of rapamycin responsiveness was shown in a second myeloma model: the PTEN-null OPM-2 cell line transfected with wild-type PTEN. Because extracellular signal–regulated kinase (ERK)/p38 activity facilitates IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of AKT-dependent effects on rapamycin sensitivity. AKT-transfected U266 cells showed significantly decreased ERK and p38 activity. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low-AKT” myeloma cells. Furthermore, the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down-regulated D-cyclin protein expression and G1 arrest. However, ectopic overexpression of an activated MEK gene did not increase cap-independent translation of D-cyclin in “high-AKT” myeloma cells, indicating that mitogen-activated protein kinase/ERK kinase/ERK activity was required, but not sufficient, for activation of the IRES. These data support a scenario where heightened AKT activity down-regulates D-cyclin IRES function in multiple myeloma cells and ERK facilitates activity. [Mol Cancer Ther 2009;8(1):83–93
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.