Jump to content

Recommended Posts

Posted

I am reading a textbook on eigenvalue/eigenvector and this question is from there.

 

Normally, I would use the method where the inverse of the matrix on the LHS is used to multiply the matrix on the RHS. However there are two issues here when trying to use this method. Firstly the RHS matrix is singular and the determinant cannot be found. Secondly any matrix multiplied with the zero matrix on the RHS will be zero anyway. The answer given in the book for [y z] is [2 -1]

Posted (edited)

If an eigenvector has an associated eigenvalue of zero, then all multiples of this eigenvector solve the equation => find the eigenvectors and their eigenvalues.

Edited by timo
Posted

My question here is not about eigenvalue or eigenvector.

 

It is specific to the matrix equation I attached to my original post

Posted (edited)

The equation is [math]\begin{bmatrix}1 & 2 \\ 2 & 4 \end{bmatrix}\begin{bmatrix}y \\ z\end{bmatrix}= \begin{bmatrix}y+ 2z \\ 2y+ 4z\end{bmatrix}= \begin{bmatrix}0 \\ 0 \end{bmatrix}[/math].
The determinant of the matrix is 0 which means it does not have an inverse. That, in turn, means that there is no unique solution to this equation. Either there is no solution or there are an infinite number of solutions. Obviously [math]\begin{bmatrix} y \\ z\end{bmatrix}= \begin{bmatrix}0 \\ 0 \end{bmatrix}[/math] is a solution so there must be an infinite number of solutions. To find them, I would write this matrix equation as the system of equations y+ 2z= 0 and 2y+ 4z= 0. Dividing the second equation by 2 gives y+ 2z= 0, the same as the first equation. Any y and z that satisfy y+ 2z= 0, which is the same as y= -2z, will satisfy both equations and so [math]\begin{bmatrix}-2z \\ z\end{bmatrix}[/math] will satisfy the matrix equation for z any number. You could also write that as [math]z\begin{bmatrix}-2 \\ 1 \end{bmatrix}[/math] or "any multiple of [math]\begin{bmatrix}-2 \\ 1 \end{bmatrix}[/math]".

Edited by Country Boy
Posted

Hi Hallsoflvy, thanks for your inputs! If you take a look at the attachment, the solution given for [y z] is [2 -1]. Sorry as I am not familiar with latex, I typed the matrix in row form for convenience.

example.pdf

Posted

My question here is not about eigenvalue or eigenvector. It is specific to the matrix equation I attached to my original post

So is my reply. I even explicitly told you how to solve for the [x y] vector, and why that approach gives you the solution.

Posted

Hi Hallsoflvy, thanks for your inputs! If you take a look at the attachment, the solution given for [y z] is [2 -1]. Sorry as I am not familiar with latex, I typed the matrix in row form for convenience.

 

I said​ that any multiple of (-2, 1) is a solution. Clearly (2, -1) is a solution because it is -1 times (-2, 1). In fact, we could say that all solutions are multiples of (2, -1).

 

However, it is wrong to say that (2, -1) is the solution. It is a solution- one of an infinite number of solutions.

Posted

Hi HallsofIvy, thanks again. I understand it now. The solution is a basis vector of the eigenspace, which represents the multiples (infinite number) of the basis vector.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.