Pawel Wembley Posted November 8, 2016 Posted November 8, 2016 (edited) I would appreciate very much your help or direction to solve the problem. Looks like equation Q=SUM(ABS(B-Ai)) has got min and max values with the assumptions 0<B<1 0<=Ai<=1 SUM(A1:AK)=1 and i is a natural number from 1 to K Looks like the Qmax and Qmin depend on B and K only. I failed to find general solution for Qmax and Qmin. I attach the pdf with the problem written in Word Equation instead of Excel manner Q.pdf Edited November 8, 2016 by Pawel Wembley
renerpho Posted November 20, 2016 Posted November 20, 2016 (edited) Hello Pawel. The mimimum [math]Q_{min}=\max(KB-1,0)[/math] is calculated as follows: [math]\sum_{i=1}^{K}|B-A{_i}|\geq 0[/math] is trivial, and reached if all [math]A{_i}[/math] are equal to [math]B[/math]. If [math]KB-1>0[/math] then the minimum is not reached at 0, but at [math]\sum_{i=1}^{K}|B-A{_i}|\stackrel{|x|\geq x}{\geq}\sum_{i=1}^{K}(B-A{_i})\[/math] [math]=KB-\sum_{i=1}^{K}A{_i}\ \stackrel{\sum_{i=1}^{K}A{_i}=1}{=}KB-1[/math]. This minimum value is reached if and only if [math]A{_i}<B \forall i[/math]. In the case [math]KB-1<0[/math], you have [math]B<\frac{1}{K}[/math], so at least one of the [math]A{_i}[/math] is larger than [math]B[/math] (by the Pigeon Principle). Which means that [math]KB-1[/math] can't be reached. In that case, the mimimum is 0. For the maximum [math]Q_{max}=1+B(K-2)[/math]: [math]\sum_{i=1}^{K}|B-A{_i}| \stackrel{extend}{=}\sum_{i=1}^{K}(B+A{_i})-\sum_{i=1}^{K}(B+A_{i}-|B-A{_i}|)[/math] [math]=KB+1-\sum_{i=1,A{_i}>B}^{K}(B+A{_i}+B-A{_i})-\sum_{i=1,A{_i}\leq B}^{K}(B+A{_i}-B+A{_i})[/math] [math]=KB+1-\sum_{i=1,A{_i}>B}^{K}(2B)-\sum_{i=1,A{_i}\leq B}^{K}(2A{_i})[/math]. This will get maximal if you have [math]A{_i}=0 \forall A{_i}\leq B[/math], when it will be equal to [math]KB+1-2B \cdot 1_{A{_i}>B}[/math]. If one of the [math]A{_i}[/math] is equal to [math]1[/math] (and all other [math]A_{i}[/math] are [math]0[/math]), this will take its maximum value [math]KB+1-2B \cdot 1=1+B(K-2)[/math]. Edited November 20, 2016 by renerpho 2
Pawel Wembley Posted November 21, 2016 Author Posted November 21, 2016 Hi Quark, it is great. Big thanks and regards. 1
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now