Edgar L. Owen Posted December 3, 2016 Posted December 3, 2016 (edited) All A computational universe must be logically consistent and logically complete. If it weren't it would tear itself apart at the inconsistencies and pause at the incompletenesses and could not exist. < huge plug for book removed - no more ads please> Edited December 3, 2016 by imatfaal removal of advert
imatfaal Posted December 3, 2016 Posted December 3, 2016 Surely any system complex enough to ask questions about itself and make reflexive statements cannot be complete and without internal contradiction. This is basically a simplistic version of Godel's Incompleteness and can be mathematically proved. 1
Edgar L. Owen Posted December 3, 2016 Author Posted December 3, 2016 Applying Godel's incompleteness theorem to a computational universe is incorrect. Godel's theorem applies to systems in which someone can arbitrarily state a wff (well formed formula) in the system and then it may be impossible to determine whether or not it can ever be reached (proven) from the axioms. But computational reality (universe) doesn't work like that. The computational universe just always directly computes its next data state from its current data state and that can always be done and Godel doesn't apply. The universe doesn't make up states and then try to figure out ways to reach them. It's not teleological, it just computes one state from the previous state.Edgar L. Owen
John Cuthber Posted December 3, 2016 Posted December 3, 2016 All A computational universe must be logically consistent and logically complete. If it weren't it would tear itself apart at the inconsistencies and pause at the incompletenesses and could not exist. < huge plug for book removed - no more ads please> So what?
Mordred Posted December 3, 2016 Posted December 3, 2016 (edited) I agree so what lol. Of course cause leads to effect. The question is can you show that in every possible scenario. Invite me to your Nobel prize when you can do so. Particularly in course graining, entanglement and superposition just to give a few examples. Just as soon as you can prove the universe is a quantum computer running some program as your books suggest. Edited December 3, 2016 by Mordred
Strange Posted December 3, 2016 Posted December 3, 2016 A computational universe must be logically consistent and logically complete. If it weren't it would tear itself apart at the inconsistencies and pause at the incompletenesses and could not exist. That is not a proof it is an (unsupported) assertion. I see no reason to think it must be true. What does "tear itself apart at the inconsistencies and pause at the incompletenesses" even mean?
Mordred Posted December 3, 2016 Posted December 3, 2016 (edited) I think it means his computational universe program will fall apart or stop working lol. Blue screen of Death " Danger Danger Will Robinson, cannot compute." Anyone know where the universe reset button is ? Edited December 3, 2016 by Mordred 1
studiot Posted December 3, 2016 Posted December 3, 2016 I think it means his computational universe program will fall apart or stop working lol. Blue screen of Death " Danger Danger Will Robinson, cannot compute." Anyone know where the universe reset button is ? Like it +1
cladking Posted December 17, 2016 Posted December 17, 2016 All A computational universe must be logically consistent and logically complete. If it weren't it would tear itself apart at the inconsistencies and pause at the incompletenesses and could not exist. I'm in close agreement with you but doubt your claim is scientific. It is more representative of the direction in which science must go because it represents the reality rather than being derived from experiment and logic. It can be seen to be true by the fact that everything which occurs is derived from that which already occurred and is affected by everything else in the universe. Rather than trying to prove your statement which is most probably beyond our ability and always will be I might suggest we simply take it as axiomatic and build a new science around it. This new science can be run in tandem with the current science and that which makes better predictions is assumed to be the reality. Science and its metaphysics is immaterial to reality. Only understanding reality leads to proper prediction.
imatfaal Posted December 27, 2016 Posted December 27, 2016 Applying Godel's incompleteness theorem to a computational universe is incorrect. Godel's theorem applies to systems in which someone can arbitrarily state a wff (well formed formula) in the system and then it may be impossible to determine whether or not it can ever be reached (proven) from the axioms. But computational reality (universe) doesn't work like that. The computational universe just always directly computes its next data state from its current data state and that can always be done and Godel doesn't apply. The universe doesn't make up states and then try to figure out ways to reach them. It's not teleological, it just computes one state from the previous state. Edgar L. Owen If it is logically complete and internally consistent - it must be able to represent itself recursively and thus factors such as Godel come into play. The universe includes all those mathematical complex systems which we can show to be either incomplete or logical inconsistent (or sometimes both but never neither) - how can something complete and consistent be both the container and the constituent of something that is incomplete and inconsistent? Or is this a "logically consistent and logically complete" computational system which does not allow for mathematics; if you bandy about terms such as logically consistent but deny mathematic interrogation of that consistency then it begins to sound as if you were merely reaching for buzzwords rather than making a solid arguable contention. 2
wtf Posted December 28, 2016 Posted December 28, 2016 (edited) The computational universe just always directly computes its next data state from its current data state ... So the universe proceeds from one discrete state to another like the frames of a movie or video game? I wonder how it is that you know that for certain. How do you know the universe isn't continuous, with the "states" being analogous to real numbers? Then there is always a state between any other two states and there is no such thing as the next state. This seems like a rather important point, don't you agree? For that matter, you don't even need the real numbers. What if the states are ordered like rational numbers? Then there's still a distinct state between any two states, but you don't even need uncountably many states to model that. Edited December 28, 2016 by wtf 1
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now