mathspassion Posted December 21, 2016 Posted December 21, 2016 (edited) Symmetry of Digit "2" In Squaring If we square 11, it is very simple put 1(2*1) (12) get 121 same as square 12 put 1(2*2)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on. When we go deep, we find that there is symmetry of two types (2, 4, 6, 8, 10, 12, 14, 16, 18, 20 …. Diff is always 2) & (1, 4 , 9 , 16, 25, 36, 49, 64, 81, 100 ) diff. is 3 5 7 9 11 13 15 17 19 and diff. of 3 5 7 9 11 always 2, so there is true symmetry . Up to 19 it is right but at 20 how we can put 1 20 100 just because of symmetry. 112 = 1 2 1 122 = 1 4 4 132 = 1 6 9 142 = 1 8 16 = 100 + 80 + 16 = 196 152 = 1 10 25 = 100 + 100 + 25 = 225 162 = 1 12 36 = 100 + 120 + 36 = 256 172 = 1 14 49 = 100 + 140 + 49 = 289 182 = 1 16 64 = 100 + 160 + 64 = 324 192 = 1 18 81 = 100 + 180 + 81 = 361 202 = 1 102 = 1 20 100 = 100 + 200 + 100 = 400 212 = 1 112 = 1 22 121 = 100 + 220 + 121 = 441 222 = 1 122 = 1 24 144 = 100 + 240 + 144 = 484 232 = 1 132 = 1 26 169 = 100 + 260 + 169 = 529 242 = 1 142 = 1 28 196 = 100 + 280 + 196 = 576 252 = 1 152 = 1 30 225 = 100 + 300 + 225 = 625 262 = 1 162 = 1 32 256 = 100 + 320 + 256 = 676 272 = 1 172 = 1 34 289 = 100 + 34 + 289 = 729 282 = 1 182 = 1 36 324 = 100 + 360 + 324 = 784 292 = 1 192 = 1 38 361 = 100 + 380 + 361 = 841 302 = 1 202 = 1 40 400 = 100 + 400 + 400 = 900 There is a symmetry, a method, which is shown as below for 31, 41, 51 and so on. 312 = 1 212 = 1 42 (1 11)2 = 1 42 (1 22 121) = 961 = 121 + 220 + 100 = 441 + 420 + 100 = 961 412 = 1 312 = 1 62 (1 21)2 = 162 (1 42) (1 11)2 = 1 62 (1 42) (1 22 121) = 1 62 (961) = 961 + 620 + 100 = 1681 512 = 1 412 = 1 82 (1 31)2 = 1 82 (1 62) (1 21)2 = 1 82 (1 62) (1 42) (1 11)2 = 1 82 (1 62) (1 42) (1 22 121) = 1 82(1681) = 1681 + 820 + 100 = 2601 612 = 1 512 = 1 102 (41)2 = 1 102 (1 82) (1 31)2 = 1 102 (1 82) (1 62) (1 21)2 = 1 102 (1 82) (1 62) (1 42) (1 11)2 = 1 102 (1 82) (1 62) (1 42) (1 22 121) = 1 102 (2601) = 2601 + 1020 + 100 = 3721 712 = 1 612 = 1 122 (1 51)2 = 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2 = 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121) = 3721 + 1220 + 100 = 5041 812 = 1 712 = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2 = 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121) = 5041 + 1420 + 100 = 6561 912 = 1 812 = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2 = 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121) = 6561 + 1620 + 100 = 8281 1012 = 1 912 = 1 182(1 812) = 1 162(1 712 ) = 1 142 (1 612) = 1 122 (1 51)2 = 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2 = 1 122 (1 102) (1 82) (1 62) (1 21)2 = 1 122 (1 102) (1 82) (1 62) (1 42)(1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2 = 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121) = 8281 + 1820 + 100 = 10201 Edited December 21, 2016 by mathspassion
imatfaal Posted December 21, 2016 Posted December 21, 2016 Sorry but I haven't read to the end of your longish post but immediately I would say that this is merely an artifact of multiplication and nothing deeper: 011 x 011 ---- 001 (units multiplied) 010 (top unit times lower tens) 010 (lower unit time top tens) 100 (tens multiplied) === 121 [Leading zeros added to make it align] You will always get the pattern of the unit squared + the tens time unit doubled + the tens squared ie 019 x 019 ---- 081 090 090 100 === 361
DrKrettin Posted December 21, 2016 Posted December 21, 2016 Without having put much thought into it, is the symmetry you have discovered not independent of the base you are working in? So it's the same for octal or hexadecimal, or any base greater than 2.
Country Boy Posted December 21, 2016 Posted December 21, 2016 (edited) It is also due to the "binomial theorem":[math](x+ y)^n= \sum_{k=0}^n \begin{pmatrix}n \\ k\end{pmatrix} x^ky^{n-k}[/math]Where [math]\begin{pmatrix}n \\ k\end{pmatrix}[/math] is the "binomial coefficient", [math]\frac{n!}{k!(n-k)!}[/math].With x= y= 1 that becomes [math]2^n= \sum_{k=0}^\infty \begin{pmatrix}n \\ k\end{pmatrix}[/math]and clearly the binomial coefficient is "symmetric":[math]\begin{pmatrix}n \\ k \end{pmatrix}= \frac{n!}{k!(n-k)!}= \frac{n!}{(n- (n-k))!(n-k)!}= \begin{pmatrix}n \\ n-k\end{pmatrix}[/math] Edited December 21, 2016 by Country Boy
mathspassion Posted December 22, 2016 Author Posted December 22, 2016 yes know but if we go deep we get something new.......... now your turn....... find more.........
mathspassion Posted December 23, 2016 Author Posted December 23, 2016 gonitsora.com a very useful site..
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now