Orion1 Posted September 21, 2017 Posted September 21, 2017 (edited) Photon mass: \boxed{m_{\gamma} = 0} Photon species total effective degeneracy number: \boxed{N_{\gamma} = 2} Photon radiation energy radiant emmittance Bose-Einstein distribution integration via substitution: (ref. 1) j^{*} = \sigma_{\gamma} T_{\gamma}^4 = \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \cos \phi \sin \phi \; d \phi \; d \theta \; \frac{N_{\gamma} E_{\gamma}^4}{c^2 (2 \pi \hbar)^3} \int_{0}^\infty \frac{E_t (\omega)^3}{e^{\frac{E_t (\omega)}{E_1 (T_{\gamma})}} - 1} d \omega = \frac{\pi N_{\gamma} (k_B T_{\gamma})^4}{c^2 (2 \pi \hbar)^3} \left( \frac{\pi^4}{15} \right) = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{120 c^2 \hbar^3} Radiant emmittance Stefan-Boltzmann constant: (ref. 2) \boxed{\sigma_{\gamma} = \frac{N_{\gamma} \pi^2 k_B^4}{120 c^2 \hbar^3}} Radiant emmittance Stefan-Boltzmann law: (ref. 2) \boxed{j^{*} = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{120 c^2 \hbar^3}} Photon radiation energy density Bose-Einstein distribution integration via substitution: (ref. 3, pg. 43, eq. 204-206) \epsilon_{\gamma} = \alpha_{\gamma} T_{\gamma}^4 = \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta \; d \theta \; d \phi \; \frac{N_{\gamma} E_{\gamma}^4}{(2 \pi \hbar c)^3} \int_{0}^\infty \frac{E_t (\omega)^3}{e^{\frac{E_t (\omega)}{E_1 (T_{\gamma})}} - 1} d \omega = \frac{4 \pi N_{\gamma} (k_B T_{\gamma})^4}{(2 \pi \hbar c)^3} \left( \frac{\pi^4}{15} \right) = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{30 (\hbar c)^3} Photon radiation constant: \boxed{\alpha_{\gamma} = \frac{N_{\gamma} \pi^2 k_B^4}{30 (\hbar c)^3}} Photon radiation energy density: \boxed{\epsilon_{\gamma} = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{30 (\hbar c)^3}} Any discussions and/or peer reviews about this specific topic thread? Reference: Wikipedia - Stefan–Boltzmann law - derivation from Planck's law: (ref. 1)https://en.wikipedia.org/wiki/Stefan–Boltzmann_law#Derivation_from_Planck.27s_law Wikipedia - Stefan-Boltzmann law: (ref. 2)https://en.wikipedia.org/wiki/Stefan–Boltzmann_law PHYS: 652 Cosmic Inventory I: Radiation: (ref. 3)http://www.nicadd.niu.edu/~bterzic/PHYS652/Lecture_09.pdf Edited September 21, 2017 by Orion1 source code correction
swansont Posted September 21, 2017 Posted September 21, 2017 Your answer differs from that of the derivation on Wikipedia. For discussion, I imagine the citations given would be a good place to start. Given that the Stefan-Boltzmann law is >100 years old, probably not a lot of recent papers on it.
Orion1 Posted September 23, 2017 Author Posted September 23, 2017 (edited) Photon species total effective degeneracy number: \boxed{N_{\gamma} = 2} Planck's law: (ref. 1) \boxed{I_{\gamma}(\nu,T_{\gamma}) = \frac{N_{\gamma} h \nu^3}{c^2 (e^{\frac{E_t}{E_{\gamma}}} - 1)}} Radiant emmittance integration via substitution: (ref. 2) j^* = \int d\Omega \int_0^\infty I_{\gamma}(\nu,T_{\gamma}) \; d\nu \int d\Omega = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \sin \phi \; d \phi \; d\theta j^* = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \; \sin \phi \; d \phi \; d\theta \int_0^\infty I_{\gamma}(\nu,T_{\gamma}) \; d\nu j^* = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \; \sin \phi \; d \phi \; d\theta \; \frac{N_{\gamma} h}{c^2} \int_0^\infty \frac{\nu^3}{e^{\frac{E_t}{E_{\gamma}}} - 1} \; d\nu Differential calculus theorem: \boxed{\frac{\int_a^b f(u)^n \; du}{\int_a^b f(v)^n \; dv} = \left( \frac{du}{dv} \right)^{n+1}} \int_0^\infty \frac{\nu^3}{e^{\frac{E_t}{E_{\gamma}}} - 1} \; d\nu = \left( \frac{d\nu}{du} \right)^4 \int_0^\infty \frac{u^3}{e^u - 1} \; du j^* = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \; \sin \phi \; d \phi \; d\theta \; \frac{N_{\gamma} h}{c^2} \left( \frac{d\nu}{du} \right)^4 \int_0^\infty \frac{u^3}{e^u - 1} \; du \frac{d\nu}{du} = \frac{E_{\gamma}}{h} j^* = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \; \sin \phi \; d \phi \; d\theta \; \frac{N_{\gamma} h}{c^2} \left( \frac{E_{\gamma}}{h} \right)^4 \int_{0}^\infty \frac{E_t (\nu)^3}{e^{\frac{E_t (\nu)}{E_{\gamma} (T_{\gamma})}} - 1} d \nu j^* = \int_0^{2 \pi} \int_0^{\frac{\pi}{2}} \cos \phi \; \sin \phi \; d \phi \; d\theta \; \frac{N_{\gamma} E_{\gamma}^4}{c^2 h^3} \int_{0}^\infty \frac{E_t (\nu)^3}{e^{\frac{E_t(\nu)}{E_{\gamma} (T_{\gamma})}} - 1} d \nu j^{*} = \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \cos \phi \sin \phi \; d \phi \; d \theta \; \frac{N_{\gamma} E_{\gamma}^4}{c^2 (2 \pi \hbar)^3} \int_{0}^\infty \frac{E_t (\omega)^3}{e^{\frac{E_t (\omega)}{E_{\gamma} (T_{\gamma})}} - 1} d \omega = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{120 c^2 \hbar^3} Radiant emmittance Stefan-Boltzmann law: (ref. 3) \boxed{j^{*} = \frac{N_{\gamma} \pi^2 (k_B T_{\gamma})^4}{120 c^2 \hbar^3}} Is there a formal name or formal method name for this differential calculus theorem? \boxed{\frac{\int_a^b f(u)^n \; du}{\int_a^b f(v)^n \; dv} = \left( \frac{du}{dv} \right)^{n+1}} Any discussions and/or peer reviews about this specific topic thread? Reference: Wikipedia - Planck's law: (ref. 1)https://en.wikipedia.org/wiki/Planck's_law Wikipedia - Stefan–Boltzmann law - derivation from Planck's law: (ref. 2)https://en.wikipedia.org/wiki/Stefan–Boltzmann_law#Derivation_from_Planck.27s_law Wikipedia - Stefan-Boltzmann law: (ref. 3)https://en.wikipedia.org/wiki/Stefan–Boltzmann_law Edited September 23, 2017 by Orion1 source code correction
swansont Posted September 23, 2017 Posted September 23, 2017 On 9/23/2017 at 10:14 AM, Orion1 said: Any discussions and/or peer reviews about this specific topic thread? Expand Re-posting, asking the same question and ignoring a response is not a tactic I would advise.
Mordred Posted September 23, 2017 Posted September 23, 2017 On 9/23/2017 at 10:14 AM, Orion1 said: j∗=Nγπ2(kBTγ)4120c2ℏ3 Is there a formal name or formal method name for this differential calculus theorem?∫baf(u)ndu∫baf(v)ndv=(dudv)n+1 Expand looks like a differentation by parts
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now