czarodziej_snow Posted September 24, 2017 Posted September 24, 2017 Hi Sorry for my language but I dont speak english very well and probably I have trouble understanding comments. Over a year ago Professor Jadczyk was interested me Dzanibekov's effect. https://www.youtube.com/watch?v=BGRWg4aV2mw Currently I can calculate and simulate a lot. I will use the equations because they are a universal language and they are understandable to all science on over the world. Vector product. a x b = c Perpendicular axis i ┴ j ┴ k Proportions of vectors ck=ai*bjai=ck/bjbj=ck/ai The inverse of the vector. a(ax,ay,az)=√(ax2+ay2+az2) 1/a=a/a2=(ax/a2, ay/a2, az/a2) Example d (1,1,1) 1/d (1/3, 1/3, 1/3) e (1,1,0) 1/e (1/2, 1/2, 0) f (1,0,0) 1/f (1,0,0) Easy vector product equations. c = a x b a = 1/b x c b = c x 1/a Vector product equations for velocity, angular velocity and position. These equations are correct only for a free point. v = ω x r = 1/s * m ω = 1/r x v = 1/m * m/s r = v x 1/ω = m/s * s In rigid body rotation usually Angular velocity is not stable. https://youtu.be/CAVXGDMbquk How to calculate temporary angular velocity for rigid body rotation? Rigid body elements m1x`(√2, √2, 0); v1(0,0,-2) m2x`(-√2, -√2, 0); v2(0,0,2) m3y`(-√2, √2, 0); v3(0,0,-2) m4y`(√2, -√2, 0); v4(0,0,2) m1,m2 is x` main axis. m3,m4 is y` main axis. The center of mas is the center of the coordinate system. We calculate angular velocity for main axis ωx`=(-√2/2, √2/2, 0) ωy`=(-√2/2, -√2/2, 0) These are components temporary angular velocity for rigid body rotation Ω = ωx` + ωy` =(√2, 0, 0) https://m.salon24.pl/051c2bf7373b20e081ac0f25ababa170,750,0,0,0.jpg How to calculate velocity? Property vector product: a x b = c ---> c=absinα If Ω (x,0,0) and r (x,y,0) this give ry┴Ω i rx║Ω v = Ω x ry Angular momentum for the free point L = r x p Angular momentum for rigid body show that equations using tensor moment of inertia. Lx= ωxΣmn(rn2-xn2) + ωyΣmnxnyn + ωzΣmnxnznLy= ωxΣmnynxn + ωyΣmn(rn2-yn2) + ωzΣmnynznLz= ωxΣmnznxn + ωyΣmnznyn + ωzΣmn(rn2-zn2) r is the position point to the center of mass. Easier equations using moment of inertia for main axis Ix=mxr2 + m-xr2; Iy=myr2=m-yr2 Lx = (r1 x p1)x + (r2 x p2)-xLy = (r3 x p3)y + (r4 x p4)-yLz = (r5 x p5)z + (r6 x p6)-zL = Lx + Ly + Lz Centripetal acceleration ad for point. ad=rω2 --> rω=v ad=v2/r --> v/r=ω ad=ωv ad║-r Vector product equations for centripetal acceleration ad = ω x v ω = 1/v x adv =ad x 1/ω Equations temporary angular velocity for rigid body rotation Ω=ωx`+ωy`+ωz`=(1/v x ad)x` + (1/v x ad)y` + (1/v x ad)z` Centripetal forces for point in rigid body rotation, three possibilities. First version F=am ω = 1/v x adω = 1/mv x madω = 1/p x FdFd = ω x p p = Fd x 1/ω Second version Ω = (x, 0, 0) r = rx +ry = r┴ + r║ Fd=mω2 ry Third version Ω = (x, 0, 0) r = rx +ry = r┴ + r║ Fd=mω2 r Fd=m(1/ry x v)2 r Everything shows my animation https://youtu.be/oz1uw9x13kA Another animation shows the angular acceleration vector for the effect https://youtu.be/exwM5bTuO6Q https://youtu.be/v2kwwzLA3aM Another animation shows the vectors in no inertial frame https://youtu.be/LZ9YwG9cVBE code for the first simulation Vpython. from visual import * mx=0.5 #masy x`,y` my=1. x1=1 #pozycja m1,m2 na osi x` y1=0 z1=0 x2=0 #pozycja m3,m4 na osi y` y2=1 z2=0 r=vector(x1,y1,z1) #promien R=mag(r) #print R W=vector(0.9,0,0) #omega v1=W.x*y1 #predkosci v2=W.x*-y1 v3=W.x*y2 v4=W.x*-y2 p1=mx*v1 #ped p2=mx*v2 p3=my*v3 p4=my*v4 ax=(v1*v1) #przyspieszenia a=(v^2)/r; r=1 ay=(v3*v3) #print "v",v1,v2,v3,v4 TIxx=(2*mx*((y1*y1)+(z1*z1)))+(2*my*((y2*y2)+(z2*z2))) #mx1 i mx2 --> 2*mx TIyy=(2*mx*((x1*x1)+(z1*z1)))+(2*my*((x2*x2)+(z2*z2))) #elementy tensora TIzz=(2*mx*((x1*x1)+(y1*y1)))+(2*my*((x2*x2)+(y2*y2))) TIxy=(2*mx*x1*y1)+(2*my*x2*y2) TIxz=(2*mx*x1*z1)+(2*my*x2*z2) TIyx=(2*mx*y1*x1)+(2*my*y2*x2) TIyz=(2*mx*y1*z1)+(2*my*y2*z2) TIzx=(2*mx*z1*x1)+(2*my*z2*x2) TIzy=(2*mx*z1*y1)+(2*my*z2*y2) Fdx=mx*W.x*W.x*y1 #sily dosrodkowe na osiach glownych z Fd=mW^2ry Fdy=my*W.x*W.x*y2 #print "F", Fd1,Fd2 Fdax=mx*ax #sily dosrodkowe na osiach glownych z F=ma Fday=my*ay #L=vector((W.x*TIxx-W.y*TIxy-W.z*TIxz),(-W.x*TIyx+W.y*TIyy-W.z*TIyz),(-W.x*TIzx-W.y*TIzy+W.z*TIzz)) #print "W",W omega=arrow(axis=vector(W.x,W.y,0), color= color.blue, shaftwidth=0.05) #omega startowa #kret=arrow(axis=vector(0,0,0), color= color.red, shaftwidth=0.04) kret2=arrow(axis=vector(0,0,0),color=vector(1,0.4,0.4), shaftwidth=0.04) #kret2x=arrow(axis=vector(0,0,0),color=vector(1,1,0.3), shaftwidth=0.04) #kret2y=arrow(axis=vector(0,0,0),color=vector(1,1,0.3), shaftwidth=0.04) dv1=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05) #przyspieszenie punktow dv2=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05) dv3=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05) dv4=arrow(axis=vector(0,0,0), color=vector(0.3,0.6,0), shaftwidth=0.05) dvg=arrow(pos=vector(0,1,0),axis=vector(0,0,0), color=vector(0.6,0.6,0), shaftwidth=0.05) dvd=arrow(pos=vector(0,-1,0),axis=vector(0,0,0), color=vector(0.6,0.6,0), shaftwidth=0.05) #omegax=arrow(axis=vector(0,0,0), color= vector(0,0,0.01), shaftwidth=0.02) #omegay=arrow(axis=vector(1,0,0), color= vector(0,0,0.01), shaftwidth=0.02) masa1x=sphere(pos=vector(x1,y1,0),radius=0.05) #bryla sztywna masa2x=sphere(pos=vector(-x1,-y1,0),radius=0.05) masa1y=sphere(pos=vector(x2,y2,0),radius=0.05) masa2y=sphere(pos=vector(-x2,-y2,0),radius=0.05) promien1=arrow(pos=masa2x.pos, axis=masa1x.pos-masa2x.pos, color= color.yellow, shaftwidth=0.005) promien2=arrow(pos=masa2y.pos, axis=masa1y.pos-masa2y.pos, color= color.yellow, shaftwidth=0.005) vm1x=arrow(pos=masa1x.pos, axis=vector(0,0,v1), shaftwidth=0.01) #wektory predkosci punktow vm2x=arrow(pos=masa2x.pos, axis=vector(0,0,v2), color=color.green, shaftwidth=0.01) vm1y=arrow(pos=masa1y.pos, axis=vector(0,0,v3), color=color.green, shaftwidth=0.01) vm2y=arrow(pos=masa2y.pos, axis=vector(0,0,v4), color=color.green, shaftwidth=0.01) #orbita1=ring(pos=vector(x1,0,0), axis=vector(1,0,0), radius=y1, thickness=0.01) #orbita os=arrow(pos=vector(-2,0,0), axis=vector(4,0,0),color=vector(0.3,0.3,0.3),shaftwidth=0.005) #os obrotu sila1=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdx, color= vector(1,1,0), shaftwidth=0.05) #wektory sil dosrodkowych punktow sila2=arrow(pos=masa1x.pos,axis=-vector(-x1,-y1,0)*Fdx, color= vector(1,1,0), shaftwidth=0.05) sila3=arrow(pos=masa1y.pos,axis=-vector(x2,y2,0)*Fdy, color= vector(1,1,0), shaftwidth=0.05) sila4=arrow(pos=masa1y.pos,axis=-vector(-x2,-y2,0)*Fdy, color= vector(1,1,0), shaftwidth=0.05) sumasilag=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych gora z Fd=mW^2ry sumasilad=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol z Fd=mW^2ry #sila1a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdax, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow #sila2a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fdax, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow #sila3a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fday, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow #sila4a=arrow(pos=masa1x.pos,axis=-vector(x1,y1,0)*Fday, color= vector(1,1,0.5), shaftwidth=0.05) #wektory sil dosrodkowych punktow #sumasilga=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol F=am #sumasilda=arrow(color= vector(0.8,0.5,0), shaftwidth=0.05) #suma sil dosrodkowych dol F=am #sumaF=arrow(axis=-vector(0,Fd1+Fd2,0), color= vector(1,0.5,0), shaftwidth=0.03) t=0 while t<20: rate(3) # print t,L # print TIxx-TIxy-TIxz,-TIyx+TIyy-TIyz,-TIzx-TIzy+TIzz # print TIxx,TIxy,TIxz," I ",TIyx,TIyy,TIyz," I ",TIzx,TIzy,TIzz x1=x1-0.1 #nowe pozycje punktow y1=sqrt(1-(x1*x1)) y2=y2-0.1 x2=-sqrt(1-(y2*y2)) v1=W.x*y1 # v = W x ry v2=W.x*-y1 v3=W.x*y2 v4=W.x*-y2 ov1=1/v1 #1/v ov2=1/v2 ov3=1/v3 ov4=1/v4 # print t,v1*ov1 r1=vector(x1,y1,0) #promienie r2=vector(-x1,-y1,0) r3=vector(x2,y2,0) r4=vector(-x1,-y1,0) # print mag(r1),mag(r2),mag(r3),mag(r4) p1=mx*v1 #ped p2=mx*v2 p3=my*v3 p4=my*v4 op1=1/p1 #1/p op2=1/p2 op3=1/p3 op4=1/p4 # print "v",v1,v2,v3,v4, "p",p1,p2,p3,p4 wx=vector(y1*v1,-(x1*v1),0) # wx` = r x v12; r=1 wy=vector(y2*v3,-(x2*v3),0) # wy` = r x v34; r=1 Wk=wx+wy # omega koncowa Wk=wx`+wy` # print t, "Ws=", W, "Wk=", Wk a1=(v1*v1)/mag(r1) #przyspieszenia a=(v^2)/r; r=1 a2=(v2*v2)/mag(r2) a3=(v3*v3)/mag(r3) a4=(v4*v4)/mag(r4) a1v=vector(x1,y1,0)*-a1 #wektory przyspieszen a2v=vector(-x1,-y1,0)*-a2 a3v=vector(x2,y2,0)*-a3 a4v=vector(-x2,-y2,0)*-a4 # a1r=-r1*(v1*v1) # f1am=a1*mx # print t, f1am # print t,a1,a2 if t<10: #suma par przyspieszen dosrodkowych gora, dol z Fd=mW^2ry adg=a1v+a3v add=a2v+a4v else: adg=a1v+a4v add=a2v+a3v Wax=vector(-ov1*a1v.y,ov1*a1v.x,0) # w = 1/v x a Way=vector(-ov3*a3v.y,ov3*a3v.x,0) Wa=Wax+Way #W=wx`+wy` # print t, Wa # r1=sqrt((x1*x1)+(y1*y1)) TIxx=(2*mx*((y1*y1)+(z1*z1)))+(2*my*((y2*y2)+(z2*z2))) #mx1 i mx2 --> 2*mx TIyy=(2*mx*((x1*x1)+(z1*z1)))+(2*my*((x2*x2)+(z2*z2))) TIzz=(2*mx*((x1*x1)+(y1*y1)))+(2*my*((x2*x2)+(y2*y2))) TIxy=(2*mx*x1*y1)+(2*my*x2*y2) TIxz=(2*mx*x1*z1)+(2*my*x2*z2) TIyx=(2*mx*y1*x1)+(2*my*y2*x2) TIyz=(2*mx*y1*z1)+(2*my*y2*z2) TIzx=(2*mx*z1*x1)+(2*my*z2*x2) TIzy=(2*mx*z1*y1)+(2*my*z2*y2) L=vector((W.x*TIxx-W.y*TIxy-W.z*TIxz),(-W.x*TIyx+W.y*TIyy-W.z*TIyz),(-W.x*TIzx-W.y*TIzy+W.z*TIzz)) if y1<0: #wartosc sily dosrodkowe Fd=mW^2ry Fdx=mx*W.x*W.x*y1 else: Fdx=-mx*W.x*W.x*y1 if y2<0: Fdy=my*W.x*W.x*y2 else: Fdy=-my*W.x*W.x*y2 # print t, Fdy, x2,y2 Lpr1=vector(y1*p1,-x1*p1,0) # L = r x p Lpr2=vector(-y1*p2,x1*p2,0) Lpr3=vector(y2*p3,-x2*p3,0) Lpr4=vector(-y2*p4,x2*p4,0) Lprx=Lpr1+Lpr2 Lpry=Lpr3+Lpr4 Lpr=Lprx+Lpry #suma kretow # print t, L-Lpr Fd1=vector(x1,y1,0)*Fdx #wektory sil dosrodkowch z Fd=mW^2ry Fd2=vector(-x1,-y1,0)*Fdx Fd3=vector(x2,y2,0)*Fdy Fd4=vector(-x2,-y2,0)*Fdy if t<10: #suma par sil dosrodkowych gora, dol z Fd=mW^2ry Fdg=Fd1+Fd3 Fdd=Fd2+Fd4 else: Fdg=Fd1+Fd4 Fdd=Fd2+Fd3 Fd1a=a1v*mx #F=am Fd2a=a2v*mx Fd3a=a3v*my Fd4a=a4v*my WFpx=vector(-op1*Fd1a.y,op1*Fd1a.x,0) #w = (1/p) x F WFpy=vector(-op3*Fd3a.y,op3*Fd3a.x,0) WFp=WFpx+WFpy # print t, WFp, W if t<10: #suma par sil dosrodkowych gora, dol z F=ma Fdag=Fd1a+Fd3a Fdad=Fd2a+Fd4a else: Fdag=Fd1a+Fd4a Fdad=Fd2a+Fd3a print t,Fdag, Fdad # kret.axis=vector(L.x,L.y,L.z+0.01) kret2.axis=vector(Lpr.x,Lpr.y,Lpr.z+0.01) # kret2x.axis=vector(Lprx.x,Lprx.y,Lprx.z+0.01) # kret2y.axis=vector(Lpry.x,Lpry.y,Lpry.z+0.01) masa1x.pos=vector(x1,y1,0) masa2x.pos=vector(-x1,-y1,0) masa1y.pos=vector(x2,y2,0) masa2y.pos=vector(-x2,-y2,0) promien1.pos=masa2x.pos promien1.axis=masa1x.pos-masa2x.pos promien2.pos=masa2y.pos promien2.axis=masa1y.pos-masa2y.pos vm1x.pos=masa1x.pos vm1x.axis=vector(0,0,v1) vm2x.pos=masa2x.pos vm2x.axis=vector(0,0,v2) vm1y.pos=masa1y.pos vm1y.axis=vector(0,0,v3) vm2y.pos=masa2y.pos vm2y.axis=vector(0,0,v4) # orbita1.pos=vector(x1,0,0) # orbita1.radius=y1 # omegax.axis=wx # omegay.axis=wy # dv1.pos=vector(x1,y1,0) # dv1.axis=vector(a1v.x,a1v.y,a1v.z) # dv2.pos=vector(-x1,-y1,0) # dv2.axis=vector(a2v.x,a2v.y,a2v.z) # dv3.pos=vector(x2,y2,0) # dv3.axis=vector(a3v.x,a3v.y,a3v.z) # dv4.pos=vector(-x2,-y2,0) # dv4.axis=vector(a4v.x,a4v.y,a4v.z) # dvg.axis=vector(adg.x,adg.y,adg.z) # dvd.axis=vector(add.x,add.y,add.z) sila1.pos=vector(x1,y1,0) # sila1.axis=vector(0,-mag(Fd1),0) sila1.axis=vector(Fd1.x,Fd1.y,Fd1.z) sila2.pos=vector(-x1,-y1,0) # sila2.axis=vector(0,mag(Fd2),0) sila2.axis=vector(Fd2.x,Fd2.y,Fd2.z) sila3.pos=vector(x2,y2,0) sila3.axis=vector(Fd3.x,Fd3.y,Fd3.z) sila4.pos=vector(-x2,-y2,0) sila4.axis=vector(Fd4.x,Fd4.y,Fd4.z) # if t<10: # sila3.axis=vector(0,-mag(Fd3),0) # sila4.axis=vector(0,mag(Fd4),0) # else: # sila3.axis=vector(0,mag(Fd3),0) # sila4.axis=vector(0,-mag(Fd4),0) sumasilag.axis=vector(Fdg.x,Fdg.y,Fdg.z) sumasilad.axis=vector(Fdd.x,Fdd.y,Fdd.z) # sila1a.pos=vector(x1,y1,0) # sila1a.axis=vector(Fd1a.x,Fd1a.y,Fd1a.z) # sila2a.pos=vector(-x1,-y1,0) # sila2a.axis=vector(Fd2a.x,Fd2a.y,Fd2a.z) # sila3a.pos=vector(x2,y2,0) # sila3a.axis=vector(Fd3a.x,Fd3a.y,Fd3a.z) # sila4a.pos=vector(-x2,-y2,0) # sila4a.axis=vector(Fd4a.x,Fd4a.y,Fd4a.z) # sumasilga.axis=vector(Fdag.x,Fdag.y,Fdag.z) # sumasilda.axis=vector(Fdad.x,Fdad.y,Fdad.z) # sumaF.axis=sila1.axis+sila2.axis # LxF=sumaF.axis.x*L.x+sumaF.axis.y*L.y+sumaF.axis.z*L.z # print t,"L x F",LxF t=t+1
swansont Posted September 24, 2017 Posted September 24, 2017 Is there a question here? A basic explanation is found here:http://www.sciencealert.com/watch-wtf-is-going-on-with-this-object-spinning-in-zero-gravity and it's discussed in the embedded video starting at ~4:20
czarodziej_snow Posted September 24, 2017 Author Posted September 24, 2017 @swansont Thanks for the link, I'm trying to understand this deeper " Is there a question here?" There are many answers in this note but there are still many questions. The main question, how do the centripetal forces work in this effect?
J.C.MacSwell Posted September 25, 2017 Posted September 25, 2017 On 9/24/2017 at 10:11 AM, czarodziej_snow said: @swansont Thanks for the link, I'm trying to understand this deeper " Is there a question here?" There are many answers in this note but there are still many questions. The main question, how do the centripetal forces work in this effect? They vary in direction with respect to the centre of mass, with the net forces small enough and close enough toward it to allow it to spin seemingly freely at times, and at other times applying enough torque to shift it to the next spinning mode. I hope that makes some sense.
swansont Posted September 25, 2017 Posted September 25, 2017 On 9/24/2017 at 9:11 AM, czarodziej_snow said: @swansont Thanks for the link, I'm trying to understand this deeper " Is there a question here?" There are many answers in this note but there are still many questions. The main question, how do the centripetal forces work in this effect? I don't think centripetal forces are the primary issue here. The rotation about the axis is unstable, so that any small amount of perturbation will cause the change in orientation. Almost every instance of rotation there will be some rotation about another axis, but if the primary rotation is stable this isn't an issue. https://en.wikipedia.org/wiki/Tennis_racket_theorem
czarodziej_snow Posted September 26, 2017 Author Posted September 26, 2017 The mechanics of rigid bodies describe the Euler equations. Ix(dωx /dt) + (Iz - Iy)ωzωy = 0 Iy(dωy /dt)+ (Ix - Iz)ωzωx = 0 Iz(dωz /dt)+ (Iy - Ix)ωxωy = 0 Important is the difference in moments of inertia on the main axes and angular velocity vector components . After easy transformations we have Ixɛx = (Iy - Iz)ωzωy Iyɛy = (Iz - Ix)ωzωx Izɛz = (Ix - Iy)ωxωy Iωω = Iɛ = M - momentum forces Its easily visualize these vectors The problem is that Euler's equations work only in non-inertial systems.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now