Jump to content

Wormhole Metric...... How is this screwed up.


Vmedvil

Recommended Posts

2 hours ago, Vmedvil said:

Where I still forgot G in ab to uv

 

hqdefault.jpg

Split and detransform back to ω to make it the same as Cosmo

∇Eb(x,y,z,t,M,I,k,φ,ρ,m) = ∇(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ksC2/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/C2))1/2))MbC2

Which Cut E= MC2 and (1/f((x,y,z,t,M,I,k,φ,ρ,m)))

∇'(x,y,z,t,M,I,k,φ,ρ,m) = ((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ksC2/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/C2))1/2)

Reverse Solve

∇(x,y,z) = ∇'(x,y,z,t,M,I,k,φ,ρ,m)((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ksC2/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/C2))1/2)

SchrodingersEquation.jpg

Absorb Schrodinger Equation.  iħ(d/dt)Ψ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2M)Ψ(r,t) = 2

∇'(x,y,z,t,ω,M,I,k,φ,ρ,m,Ψ) = (iħ(d/dt)Ψ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2Mb)Ψ(r,t))1/2((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ksC2/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/C2))1/2)

Reaquire  E= MC2 and (1/f((x,y,z,t,M,I,k,φ,ρ,m)))

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,Ψ) = (iħ(d/dt)Ψ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2Mb)Ψ(r,t))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ksC2/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/C2))1/2))MbC2

Where 

D03408.gif 

Then C2 = (1/ε0 μ0)

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,Ψ) = (iħ(d/dt)Ψ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2Mb)Ψ(r,t))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Energy Eighenvalue transform.

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,Ψ) = (ÊΨ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2Mb)Ψ(r,t))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Ψ Transform.

Untitled.png.b99415a18bf334893915d8453646efd7.png

slide_5.jpg

 

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)eiS(r,t)/ħ)) - V(r,t)((|φ2|)eiS(r,t)/ħ))) / (ħ2/2Mb)((|φ2|)eiS(r,t)/ħ)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

S Quantum number transform. Untitled.png.7f373af3040c1310520330c12fda77ef.png 

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,s) = (Ê((|φ2|)ei(s(s+1))1/2)) - V(r,t)((|φ2|)eis(s+1)1/2))) / (ħ2/2Mb)((|φ2|)eis(s+1))))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Where I cannot do that already a exponent. 

Split ħ into h/2π

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)eiS(r,t)/h)) - V(r,t)((|φ2|)eiS(r,t)/h))) / (ħ2/2Mb)((|φ2|)eiS(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

Transform eipi-1-0.png

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)-e2S(r,t)/h)) - V(r,t)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

 

Edited by Vmedvil
Link to comment
Share on other sites

1 hour ago, Vmedvil said:

Energy Eighenvalue transform.

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,Ψ) = (ÊΨ(r,t) - V(r,t)Ψ(r,t) / (ħ2/2Mb)Ψ(r,t))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Ψ Transform.

Untitled.png.b99415a18bf334893915d8453646efd7.png

slide_5.jpg

 

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)eiS(r,t)/ħ)) - V(r,t)((|φ2|)eiS(r,t)/ħ))) / (ħ2/2Mb)((|φ2|)eiS(r,t)/ħ)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

S Quantum number transform. Untitled.png.7f373af3040c1310520330c12fda77ef.png 

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,s) = (Ê((|φ2|)ei(s(s+1))1/2)) - V(r,t)((|φ2|)eis(s+1)1/2))) / (ħ2/2Mb)((|φ2|)eis(s+1))))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Where I cannot do that already a exponent. 

Split ħ into h/2π

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)eiS(r,t)/h)) - V(r,t)((|φ2|)eiS(r,t)/h))) / (ħ2/2Mb)((|φ2|)eiS(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

Transform eipi-1-0.png

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)-e2S(r,t)/h)) - V(r,t)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

 

Transform again

Untitled.png.e41e51fc188236ef449083f8e8ff906b.png

So, (Mbωs((ksGuv./guv8πG)1/2 + mk2))Rs2/2) = V(r,t) = Mω2r2/2

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = (Ê((|φ2|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

Which badly needs to be simplified, In any case, where Untitled.png.48686900413343b6f6f9f86af1def377.png

Transform

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|φ2|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)d3p) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

which looks right, which d3p = 2E = 2ħω being a negative probability in the Klein Gordan equations.

 

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|φ2|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Edited by Vmedvil
Link to comment
Share on other sites

On 11/15/2017 at 3:25 PM, Vmedvil said:

Where is places the graviton as something very odd Time-Space Radiation with a spin of ωs= 4π2fs where Ep = hfp then Es = h(ωs/2π) which does something screwed up change the causality of space where  C is negative because it travels sideways in time being space which is gravity if 

cmW3bDZ.png

Where

EnergyOfPhoton.jpg

Es = h(ωs/2π), Never took the simple solution huh isn't much easier like that, not being like this, which are both the graviton, S = 2

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|φ2|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|φ2|)-e2S(r,t)/h))) / (ħ2/2Mb)((|φ2|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

back to  

Eb(t,ω,R,M,I) = (1/((1-(((2MbG / Rs) - (Isωs2/2Mb) + V)2/C2))1/2))MbC2

Edited by Vmedvil
Link to comment
Share on other sites

Oh my Here lets save you a ton of effort. You can scream at me later.

[latex] \stackrel{Action}{\overbrace{\mathcal{L}}} \sim \stackrel{relativity}{\overbrace{\mathbb{R}}}- \stackrel{Maxwell}{\overbrace{1/4F_{\mu\nu}F^{\mu\nu}}}+\stackrel{Dirac}{\overbrace{i \overline{\psi}\gamma_\mu\psi}}+\stackrel{Higgs}{\overbrace{\mid D_\mu h\mid-V\mid h\mid}} +\stackrel{Yukawa-coupling}{\overbrace{h\overline{\psi}\psi}} [/latex]

There ya go Dirac, Higgs, Yukawa coupling, Higgs and Maxwell action all under a single equation

Link to comment
Share on other sites

34 minutes ago, Mordred said:

Oh my Here lets save you a ton of effort. You can scream at me later.

LActionRrelativity1/4FμνFμνMaxwell+iψ¯¯¯γμψDirac+DμhVhHiggs+hψ¯¯¯ψYukawacoupling

solve thourgh Yukawa Coupling where φ or Dirac not sure of which or both?

Edited by Vmedvil
Link to comment
Share on other sites

9 minutes ago, Mordred said:

image.thumb.png.67bdbba354e584f3f996d3f4cc259e63.png

 

Or study this equation from the Sean Carrol lecture

 

Yes that has to be pulled through the higgs based on that image, Du2φ where φ2φ, So there will be a  logarithm of some sort 

Edited by Vmedvil
Link to comment
Share on other sites

yes the lecture is primarily on what the Higg's revealed to us

However both equations clearly demonstrate a key aspect. The methodology to correctly understand any and all field theories is to understand how they affect kinematic motion under ACTION. The correct methodology to understand any lie group is to study the action path integrals for each Lie group. This includes relativity....

Once you understand how Action is involved in any and all lie groups the rest falls into place. ALL interactions can be described under action.

This includes the Feyman diagrams themselves under S_matrix... The external lines of the Feyman diagrams requires quanta of action while the propagators (virtual particles) are the internal lines on the diagrams.

Edited by Mordred
Link to comment
Share on other sites

Log(DgDaDψDφ-W)((id4xg1/2  (Mp2/2)R - id4xg1/2(1/4)FaμvFaμv + id4xg1/2i(ψ-bar)γμDμψi + id4xg1/2((ψ-bar)iLVijφψjr + (h.c.)) - V(φ)/-id4xg1/2Dμ2) = φ2

 

Transform.

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|(Log(DgDaDψDφ-W)((id4xg1/2  (Mp2/2)R - id4xg1/2(1/4)FaμvFaμv + id4xg1/2i(ψ-bar)γμDμψi + id4xg1/2((ψ-bar)iLVijφψjr + (h.c.)) - id4xg1/2V(φ)/id4xg1/2Dμ2)|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|(Log(DgDaDψDφ-W)((id4xg1/2  (Mp2/2)R - id4xg1/2(1/4)FaμvFaμv + id4xg1/2i(ψ-bar)γμDμψi + id4xg1/2((ψ-bar)iLVijφψjr + (h.c.)) - id4xg1/2V(φ)/-id4xg1/2Dμ2)|)-e2S(r,t)/h))) / (ħ2/2Mb)((|(Log(DgDaDψDφ-W)((id4xg1/2  (Mp2/2)R - id4xg1/2(1/4)FaμvFaμv + id4xg1/2i(ψ-bar)γμDμψi + id4xg1/2((ψ-bar)iLVijφψjr + (h.c.)) - id4xg1/2V(φ)/-id4xg1/2Dμ2)|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

Like I said what can Absolutely never be calculated that. where it wouldn't even let put the symbol for ψ bar

Where id4xg1/2  cancels. 

Log(DgDaDψDφ-W)((id4xg1/2  (Mp2/2)R - id4xg1/2(1/4)FaμvFaμv + id4xg1/2i(ψ-bar)γμDμψi + id4xg1/2((ψ-bar)iLVijφψjr + (h.c.)) - id4xg1/2V(φ)/-id4xg1/2Dμ2) = φ2

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +((ψ-bar)iLVijφψjr + (h.c.)) - V(φ)/-Dμ2)|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R -(1/4)FaμvFaμv + i(ψ-bar)γμDμψi +((ψ-bar)iLVijφψjr + (h.c.)) - V(φ)/-Dμ2)|)-e2S(r,t)/h))) / (ħ2/2Mb)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +((ψ-bar)iLVijφψjr + (h.c.)) - V(φ)/-Dμ2)|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

 

Edited by Vmedvil
Link to comment
Share on other sites

As long as you keep jumping to the end points and try to modify and apply the end point equations without understanding the proofs behind those equations you will never be able to calculate a single thing. You must take the time to properly understand how those equations got developed in the first place.

For example try this question which I will later post how to solve.

Find the energy of the vacuum for a real scalar field ?

 

Link to comment
Share on other sites

46 minutes ago, Mordred said:

As long as you keep jumping to the end points and try to modify and apply the end point equations without understanding the proofs behind those equations you will never be able to calculate a single thing. You must take the time to properly understand how those equations got developed in the first place.

For example try this question which I will later post how to solve.

Find the energy of the vacuum for a real scalar field ?

 

I dunno but it is better now after it canceled.

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R -(1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h))) / (ħ2/2Mb)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

What does h.c. mean?

38 minutes ago, Vmedvil said:

I dunno but it is better now after it canceled.

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R -(1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h))) / (ħ2/2Mb)((|(Log(DgDaDψDφ-W)((  (Mp2/2)R - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (h.c.) - V(φ)/-Dμ2)|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/ε0 μ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/ε0 μ0)))1/2))Mb(1/ε0 μ0)

What does h.c. mean?

Figured it out. aji

interchange+rows+and+columns+Transpose.j

Eb(x,y,z,t,ω,M,I,k,φ,ρ,m,S) = ((ħωs)((|(Log(DgDaDψDφ-W)((  (Mp2/2)Rs - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (aji.) - V(φ)/-Dμ2)|)-e2S(r,t)/h)) - (Mbωs(ksGuv./guv8πG)1/2 + mk2)Rs2/2)((|(Log(DgDaDψDφ-W)((  (Mp2/2)Rs -(1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (aji) - V(φ)/-Dμ2)|)-e2S(r,t)/h))) / (ħ2/2Mb)((|(Log(DgDaDψDφ-W)((  (Mp2/2)Rs - (1/4)FaμvFaμv + i(ψ-bar)γμDμψi +(ψ-bar)iLVijφψjr + (aji) - V(φ)/-Dμ2)|)-e2S(r,t)/h)))1/2(1/((1-(((2MbG / Rs) - (Isωs(ksGuv./guv8πG)1/2 + mk2)/2Mb)+ (((8πG/3)((g/(2π)3)∫(p+ mp2)(1/2)(1/e((E - μ)/T)±1)(2ħωs)) - (ks(1/εμ0)/Rs2) + (ksGuv/guv8πG ))1/2(ΔKiloparsec)))2/(1/εμ0)))1/2))Mb(1/εμ0)

Mordred you have turned my equation into literal gravity hell now which is probably right but still.

Edited by Vmedvil
Link to comment
Share on other sites

d Precisely because the details you need lie in how the creation and annihilation field operators apply to those equations. From those operators you can literally calculate the particle number density etc...

Here is the process taken from Quantum Field theory Demystified. Though its not the greatest book as it has errors its written simple enough for the average person to get a handle on QFT. page 132. To find the energy of the vacuum we need to compute
[math]\langle|\hat{H}|\rangle[/math]

[math]\langle|\hat{H}|\rangle=\langle 0|\int d^3k\omega_k[\hat{N}\vec{k}+\frac{1}{2}]|0\rangle[/math]

[math]\langle|\hat{H}|\rangle=\langle 0|\int d^3k\omega_k[\hat{a}^\dagger(k)\hat{a}(\vec{k}+\frac{1}{2}]|0\rangle[/math]

[math]=\langle 0|\int d^3k\omega_k(\hat{a}^\dagger(\vec{k}\hat{a}(\vec{k}))|+\langle 0|\int d^3k\omega_k(\frac{1}{2}|0\rangle[/math]

[math]=\frac{\omega_k}{2}\int\langle 0|0\rangle[/math]

[math]=\frac{\omega_k}{2}\int d^3k[/math]

which is reminiscent of the quantum harmonic oscilator

[math]\frac{1}{2}\hbar\omega[/math]

however this will lead to

[math]\int d^3 k\longrightarrow\infty[/math] over all of momentum space so one must renormalize the Hamilton via subtraction of the term that leads to the infinity term and set the ground state at zero to arrive at the renormalized Hamilton.

[math]\hat{H}_R=\hat{H}-\int d^3 k[/math]

[math]=\int d^3k\omega\hat{N}(\vec{k})=\int d^3k\omega_k\hat{a}^\dagger(\vec{k})\hat{a}(\vec{k})[/math]

 

 

 

Edited by Mordred
Link to comment
Share on other sites

6 minutes ago, Mordred said:

Precisely because the details you need lie in how the creation and annihilation field operators apply to those equations. From those operators you can literally calculate the particle number density etc...

Here is the process taken from Quantum Field theory Demystified. Though its not the greatest book as it has errors its written simple enough for the average person to get a handle on QFT. page 132. To find the energy of the vacuum we need to compute
[math]\langle|\hat{H}|\rangle[/math]

[math]\langle|\hat{H}|\rangle=\langle 0|\intD^3k\omega_k[\hat{N}\vec{k}+\frac{1}{2}]|0\rangle[/math]

[math]\langle|\hat{H}|\rangle=\langle 0|\intD^3k\omega_k[\hat{a}^\dagger(k)\hat{a}(\vec{k}+\frac{1}{2}]|0\rangle[/math]

[math]=\langle 0|\int D^3k\omega_k(\hat{a}^\dagger(\vec{k}\hat{a}(\vec{k}))|+\langle 0|\int d^3k\omega_k(\frac{1}{2}|0\rangle[/math]

[math]=\frac{\omega_k}{2}\int\langle 0|0\rangle[/math]

[math]=\frac{\omega_k}{2}\int d^3k[/math]

which is reminiscent of the quantum harmonic oscilator

[math]\frac{1}{2}\hbar\omega[/math]

however this will lead to

[math]\int d^3 k\longrightarrow\infty[/math] over all of momentum space so one must renormalize the Hamilton via subtraction of the term that leads to the infinity term and set the ground state at zero to arrive at the renormalized Hamilton.

[math]\hat{H}_R=\hat{H}-\intd^3 k[/math]

[math]=\intd^3k\omega\hat{N}(\vec{k})=\int d^3k\omega_k\hat{a}^\dagger(\vec{k})\hat{a}(\vec{k}[/math]

 

 

 

If this is true no wonder Gravitons are so screwed up having meditate gravity across all this shit which I have an idea what it is but ya.

Edited by Vmedvil
Link to comment
Share on other sites

Welcome to the complexity of physics, corrections applied to the above...

There is no easy way to simply skip this stuff, the real physics behind how particles arise for the number of different particles and field treatments is a complex topic that takes years of study to understand.

That is the reality of nature.

 

Link to comment
Share on other sites

13 minutes ago, Mordred said:

Welcome to the complexity of physics, corrections applied to the above...

There is no easy way to simply skip this stuff, the real physics behind how particles arise for the number of different particles and field treatments is a complex topic that takes years of study to understand.

That is the reality of nature.

 

I get it man, which is why it is probably like that. I always noticed they are/were/will be a very odd particle which is why Es  h(ωs/2π) Ebeing energy of graviton don't dig deeper than that or you will regret it.

Edited by Vmedvil
Link to comment
Share on other sites

Understanding a spin 2 boson such as the graviton is also rather tricky as you are dealing with two individual polarity states which will correspond to creation and annihilation operators but would take me forever to latex how [math]h_+,h_x[/math] would be described in terms of path integrals. the above is one of the simpler examples being scalar spin 0.

LOL you should see how bad the quaternion Higg's field looks under the above

Edited by Mordred
Link to comment
Share on other sites

10 minutes ago, Mordred said:

Understanding a spin 2 boson such as the graviton is also rather tricky as you are dealing with two individual polarity states which will correspond to creation and annihilation operators but would take me forever to latex how h+,hx would b e described in terms of path integrals. the above is one of the simpler examples being scalar spin 0.

There are some serious infinities I had to dodge to get it like that which was why Du2φwas chosen to join it at via φ2 φtry to join it at Dirac or Yukawa and see what happens.

Edited by Vmedvil
Link to comment
Share on other sites

 

Yes infinities arise quite often when dealing with any field treatments this is where one must apply renormalization and IR and UV cutoffs to avoid infinity issues. LQC does an interesting technique by applying Wicks rotation to avoid some of these issues. Under LQC renormalization is avoided via Wicks rotation. However that is just one of many numerous techniques.

Another technique being killing vectors which will correspond to you IR and UV cutoffs

Edited by Mordred
Link to comment
Share on other sites

24 minutes ago, Mordred said:

Yes infinities arise quite often when dealing with any field treatments this is where one must apply renormalization and IR and UV cutoffs to avoid infinity issues. LQC does an interesting technique by applying Wicks rotation to avoid some of these issues. Under LQC renormalization is avoided via Wicks rotation. However that is just one of many numerous techniques.

You know how I said punch a wall and stuff..... I retract that .... DON'T FUCKING MOVE FROM THAT SPOT Not even a Planck Action, it will make it that much more hell for these particles, you think you have to work hard these little guys have to work zillions of times harder even if you had to build this moving Big stones all day.

pyramid_building.jpg

Edited by Vmedvil
Link to comment
Share on other sites

Umm this is a forum where we have readers of all age groups, so lets avoid the language. It is one of our forum rules, you might note Resident experts is part of the Moderator staff

Edited by Mordred
Link to comment
Share on other sites

2 minutes ago, Mordred said:

Umm this is a forum where we have readers of all age groups, so lets avoid the language. It is one of our forum rules

Sorry, but it is a quote from something I wanted to use. This definitely debunks a "Fine Tuned Universe"

Edited by Vmedvil
Link to comment
Share on other sites

lol no prob I understand the sentiment

In all honesty It took me decades of active study to reach the understanding I now have. I at one time tried to shortcut much like your tried.

However after so many failed attempts I finally sat down and studied how every common formula was developed and derived via their individual proofs. After a while you will start to see some very common patterns. These patterns will apply to any application or theory.

One of the most common patterns being kinematic motion under the action principle. The other is group theory itself and how to organize all this complexity.

I would start with the U(1) guage then goto SU(2) then SU(3) followed by SO(1.3)

take the time to fully understand the notation Dubbelosix used is an extremely handy set of mathematics.

Unfortunately I haven't studied much on the extended groups as for the most part I never need them.

Edited by Mordred
Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.