Jump to content

Recommended Posts

Posted

https://phys.org/news/2018-05-ancient-scientists-climate-deep.html

Earth's orbital changes have influenced climate, life forms for at least 215 million years

May 7, 2018, Columbia University


Scientists drilling deep into ancient rocks in the Arizona desert say they have documented a gradual shift in Earth's orbit that repeats regularly every 405,000 years, playing a role in natural climate swings. Astrophysicists have long hypothesized that the cycle exists based on calculations of celestial mechanics, but the authors of the new research have found the first verifiable physical evidence. They showed that the cycle has been stable for hundreds of millions of years, from before the rise of dinosaurs, and is still active today. The research may have implications not only for climate studies, but our understanding of the evolution of life on Earth, and the evolution of the Solar System. It appears this week in the Proceedings of the National Academy of Sciences.

Read more at: https://phys.org/news/2018-05-ancient-scientists-climate-deep.html#jCp

 

the paper:

http://www.pnas.org/content/early/2018/05/01/1800891115

Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years:

 

Abstract

The Newark–Hartford astrochronostratigraphic polarity timescale (APTS) was developed using a theoretically constant 405-kiloyear eccentricity cycle linked to gravitational interactions with Jupiter–Venus as a tuning target and provides a major timing calibration for about 30 million years of Late Triassic and earliest Jurassic time. While the 405-ky cycle is both unimodal and the most metronomic of the major orbital cycles thought to pace Earth’s climate in numerical solutions, there has been little empirical confirmation of that behavior, especially back before the limits of orbital solutions at about 50 million years before present. Moreover, the APTS is anchored only at its younger end by U–Pb zircon dates at 201.6 million years before present and could even be missing a number of 405-ky cycles. To test the validity of the dangling APTS and orbital periodicities, we recovered a diagnostic magnetic polarity sequence in the volcaniclastic-bearing Chinle Formation in a scientific drill core from Petrified Forest National Park (Arizona) that provides an unambiguous correlation to the APTS. New high precision U–Pb detrital zircon dates from the core are indistinguishable from ages predicted by the APTS back to 215 million years before present. The agreement shows that the APTS is continuous and supports a stable 405-kiloyear cycle well beyond theoretical solutions. The validated Newark–Hartford APTS can be used as a robust framework to help differentiate provinciality from global temporal patterns in the ecological rise of early dinosaurs in the Late Triassic, amongst other problems.

 

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.