baltoche Posted May 25, 2018 Posted May 25, 2018 Dear All, I’d like to share an experience with the fall of potential method: if I call E the electrode under measurement (in a square arrangement of approx. 20m), P the inner Potential electrode and C the outer current electrode, I could get a flat curve of the E resistance whilst C was away from E by a distance corresponding roughly to the side of E. I was quite surprised since I thought this distance was too short and I expected a non flat resistance curve since E and C were supposed to couple with each other. Hence a question: can you theoretically get a flat curve when E and C voltage gradients still significantly overlap and, if so, does it necessarily mean that the resistance corresponding to the middle of this curve correspond to the real resistance of E to earth ? Thanks for your lights.
baltoche Posted June 4, 2018 Author Posted June 4, 2018 Gents, Thanks for your contributions. By fall of potential method, I meant this using 3 électrodes: - E, which is the electrode to be measured - P, which is the potential electrode - C, the current electrode The testing current is impressed in E and returns through C. See attached for illustration. Regards. fall of potential.pdf
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now