Jump to content

Recommended Posts

Posted

This question is inspired by one question, which was about representations that can be realised homologically by an action on a graph (i.e., a 1-dimensional complex).

Many interesting integral representations of groups arise via homology from a group acting on a simplicial complex that is homotopy equivalent to a wedge of spheres. A classical example is the action of groups of Lie type on spherical buildings. On homology this gives an integral form of the Steinberg representation.

One may ask if there exists a complex of lower dimension than the Tits building that realises the (integral) Steinberg representation in this way. I am guessing that the answer is No, but how to prove it?

More generally, given an integral G-representation that can be realised as the homology of a spherical complex with an action of G, is there an effective lower bound on the dimension of such a complex? One obvious lower bound is given by the minimal length of a resolution by permutation representations. Is this something that has been studied?

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.