beecee Posted September 21, 2018 Posted September 21, 2018 https://phys.org/news/2018-09-phase-transition-quantum-chromodynamics.html New observations to understand the phase transition in quantum chromodynamics: The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved nearly freely in a quark-gluon plasma. Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of Nature, an international team of scientists has presented an analysis of a series of experiments at major particle accelerators that sheds light on the nature of this transition. The scientists determined with precision the transition temperature and obtained new insights into the mechanism of cooling and freeze-out of the quark-gluon plasma into the current constituents of matter such as protons, neutrons and atomic nuclei. The team of researchers consists of scientists from the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, and from the universities of Heidelberg and Münster (Germany), and Wroclaw (Poland). Read more at: https://phys.org/news/2018-09-phase-transition-quantum-chromodynamics.html#jCp the paper: https://www.nature.com/articles/s41586-018-0491-6 Decoding the phase structure of QCD via particle production at high energy Abstract Recent studies based on lattice Monte Carlo simulations of quantum chromodynamics (QCD)—the theory of strong interactions—have demonstrated that at high temperature there is a phase change from confined hadronic matter to a deconfined quark–gluon plasma in which quarks and gluons can travel distances that greatly exceed the size of hadrons. Here we show that the phase structure of such strongly interacting matter can be decoded by analysing particle production in high-energy nuclear collisions within the framework of statistical hadronization, which accounts for the thermal distribution of particle species. Our results represent a phenomenological determination of the location of the phase boundary of strongly interacting matter, and imply quark–hadron duality at this boundary.
Recommended Posts