Jump to content

Godel's 2nd theorem ends in paradox


anne242

Recommended Posts

Godel's 2nd theorem ends in paradox
Godel's 2nd theorem is about

SPAM LINK DELETED

"If an axiomatic system can be proven to be consistent and complete from
within itself, then it is inconsistent.”


But we have a paradox

Gödel is using a mathematical system
his theorem says a system cant be proven consistent


THUS A PARADOX

Godel must prove that a system cannot be proven to be consistent based upon the premise that the logic he uses must be consistent . If the logic he uses is not consistent then he cannot make a proof that is consistent. So he must assume that his logic is consistent so he can make a proof of the impossibility of proving a system to be consistent. But if his proof is true then he has proved that the logic he
uses to make the proof must be consistent, but his proof proves that
this cannot be done
THUS A PARADOX

Edited by Strange
Link deleted
Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.