Kartazion Posted December 20, 2019 Author Posted December 20, 2019 Good morning I see that the anharmonic oscillator is rare in quantum physics. But I know that anhanamorcity interprets internuclear distance (Morse). Is there another anharmonic role in quantum physics / mechanics?
studiot Posted December 20, 2019 Posted December 20, 2019 (edited) 5 hours ago, Kartazion said: Good morning I see that the anharmonic oscillator is rare in quantum physics. But I know that anhanamorcity interprets internuclear distance (Morse). Is there another anharmonic role in quantum physics / mechanics? No it is not rare, it is just that the simple harmonic oscillator is a good enough approximation for most purposes. Jeffrey Steinfeld discusses anharmonicity in spectroscopy in his (advanced) book Molecules and Radiation - An introduction to Modern Molecular Spectroscopy Dover Edited December 20, 2019 by studiot 1
Kartazion Posted December 21, 2019 Author Posted December 21, 2019 The radiation ? Good after I do not know if I had presented it correctly, but an expert told me here and with the oscillator "you need a new model for EM radiation, because that's not how it works." Indeed I found that: http://farside.ph.utexas.edu/teaching/qmech/Quantum/node120.html So I'm going to reverse my question. What cannot we calculate with the harmonic oscillator in quantum mechanics? Thank you.
stephaneww Posted December 21, 2019 Posted December 21, 2019 (edited) gravity ? edit : oops we haven't a theory of quantum gravity Edited December 21, 2019 by stephaneww
Kartazion Posted December 21, 2019 Author Posted December 21, 2019 (edited) 59 minutes ago, stephaneww said: gravity ? edit : oops we haven't a theory of quantum gravity We have the Loop quantum gravity https://en.wikipedia.org/wiki/Loop_quantum_gravity or https://en.wikipedia.org/wiki/Quantum_gravity But I found that A_quantum_oscillator_that_could_explain_gravity (I don't know what it's Worth) Edited December 21, 2019 by Kartazion
stephaneww Posted December 21, 2019 Posted December 21, 2019 (edited) 47 minutes ago, Kartazion said: We have the Loop quantum gravity https://en.wikipedia.org/wiki/Loop_quantum_gravity or https://en.wikipedia.org/wiki/Quantum_gravity unless I'm mistaken, they're incomplete or speculative for some part 47 minutes ago, Kartazion said: But I found that A_quantum_oscillator_that_could_explain_gravity (I don't know what it's Worth) Both Academia and viXra are not very reliable sources. Edited December 21, 2019 by stephaneww
Kartazion Posted December 21, 2019 Author Posted December 21, 2019 8 minutes ago, stephaneww said: unless I'm mistaken, they're incomplete or speculative for some part Let’s say that if you manage to join relativistic gravity with quantum mechanics then it’s won. So yes it's wobbly but very ingenious for the LQG.
stephaneww Posted December 21, 2019 Posted December 21, 2019 if it's wobbly it's not pure science like QM or Relativity, it's still at the research stage for the moment
Mordred Posted December 21, 2019 Posted December 21, 2019 (edited) loop quantum gravity avoids renormalization of gravity through the use of Wicks rotation. It is the divergences of gravity that prevents it from being properly quantized to have a proper quantum theory of gravity. Edited December 21, 2019 by Mordred 1
Strange Posted December 21, 2019 Posted December 21, 2019 8 hours ago, Kartazion said: But I found that A_quantum_oscillator_that_could_explain_gravity (I don't know what it's Worth) It is worthless. Ask yourself why it has not been submitted to a peer-reviewed journal.
Kartazion Posted December 22, 2019 Author Posted December 22, 2019 13 hours ago, Mordred said: loop quantum gravity avoids renormalization of gravity through the use of Wicks rotation. It's a little bit hard to find something about the Wicks rotation in gravity. I saw a report with the path integral formulation. It's very technical. However, with the Wicks rotation here, I found that : Wick rotation connects statistical mechanics to quantum mechanics by replacing inverse temperature 1/(kBT) with imaginary time it/ℏ. Consider a large collection of harmonic oscillators at temperature T. The relative probability of finding any given oscillator with energy E is ... Now consider a single quantum harmonic oscillator in a superposition of basis states, evolving for a time t under a Hamiltonian H. ... 13 hours ago, Mordred said: It is the divergences of gravity that prevents it from being properly quantized to have a proper quantum theory of gravity. The divergences of gravity? The different operating techniques?
Mordred Posted December 22, 2019 Posted December 22, 2019 (edited) You found a relevant link in so far as it's main gist. In LQG you use wicks rotation which can be described as a mirror image of the waveform to determine finite boundaries of a wave-function. Whether or not that wave-function is sinusoidal or not. This allows finite quantization's of the numerous degrees of freedom in one loop diagrams. See renormalization. The one loop corrections mentioned under the divergences section is what plagues gravity in regards to the mass term. In LQC the earlier versions applied wicks rotations for the various particle degrees of freedom of the Langrangian's for the " effective action " for each field. https://en.wikipedia.org/wiki/Renormalization further details on the Langrangian's of each field (strong, Higgs, EM weak and somewhat gravity (still needs work)) can be hound here. Action correlates coordinate displacement of a particle to a field in accordance with the conservation laws of the standard model. In order to do this is expresses ratios of change between relations between the kinetic energy of the particle and the potential of the fields in question. The link is in the form of perturbation theory using the four momentum and the Klein Gordon and Dirac equations for Lorentz invariance. with regards to temperature in you link, there is a correlation between temperature and particle number density of a blackbody temperature. For example using the Bose Einstein statistics or the Fermi Dirac. The former for Bosons, the latter for fermions, (mixed states uses the Maxwell Boltmann) one can calculate the number density of any elementary particle given the blackbody temperature. Being QM/QFT this incorporates the quantum harmonic oscillator (which applies to both particle and field). The problem with gravity is that you end up with infinite one loop corrections to maintain various conservation laws. Edited December 22, 2019 by Mordred 1
Kartazion Posted December 23, 2019 Author Posted December 23, 2019 I understand for the moment the Minkowski diagram and its metric starting from the principle where the tensor is composed of its four dimensions. Then follows the Lorentz invariance in relation to its transformations. Next in its basic explanation, and more new to me, is renormalization, which determines a quantified finiteness at an infinite phase; indeed this is all the more true for a loop. The Wick rotation remains vague for me, even if I understand its loop diagram cut in the y axis to insert a junction of the infinite loop. However I still struggle to get used with the Lagrangian. I will now take a winding path to better understand. During quantum decoherence, is the ground state of a particle considered as a correlated state? In other words, does the correlated matter come exclusively from the excited state of the atoms, or so also requires the ground state? I am not saying that the system does not need the ground state, it is just during the wave function collapse or for the density matrix approach.
Mordred Posted December 23, 2019 Posted December 23, 2019 (edited) Here this article will help with Wicks rotation. https://www.google.com/url?sa=t&source=web&rct=j&url=https://cds.cern.ch/record/536859/files/0202018.pdf&ved=2ahUKEwicjZX258vmAhV9IDQIHVBBDK4QFjAEegQIBhAB&usg=AOvVaw0pRhVoMpCuLopChA28_OuC I will have time to look at your other questions after work. Edited December 23, 2019 by Mordred 1
Kartazion Posted December 23, 2019 Author Posted December 23, 2019 1 hour ago, Mordred said: Here this article will help with Wicks rotation. https://www.google.com/url?sa=t&source=web&rct=j&url=https://cds.cern.ch/record/536859/files/0202018.pdf&ved=2ahUKEwicjZX258vmAhV9IDQIHVBBDK4QFjAEegQIBhAB&usg=AOvVaw0pRhVoMpCuLopChA28_OuC But I don't let go.
Mordred Posted December 23, 2019 Posted December 23, 2019 Lol welcome to tensors, gamma in the above is the gamma matrixes. Those are used with the Dirac and Wheyl spinors. Here is decoherence make sure you look at quantum coherence hyperlink. I will have more time later to help
Mordred Posted December 23, 2019 Posted December 23, 2019 Correction to the above gamma is as per GR not gamma matrix. Misread it.
Kartazion Posted December 23, 2019 Author Posted December 23, 2019 4 hours ago, Mordred said: Here is decoherence make sure you look at quantum coherence hyperlink. I will have more time later to help I expected the wave function to disappear, to an excited atomic state. But apparently it's just a matter of interference.
Kartazion Posted December 23, 2019 Author Posted December 23, 2019 I don't know if it has to do with quantum decoherence, but I also saw this link: https://en.wikipedia.org/wiki/Coherent_states In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator.
Mordred Posted December 23, 2019 Posted December 23, 2019 (edited) Yes that link refers to quantum decoherence. Little hint anytime you see a reference to creation or annihilation operators your either dealing with QM or QFT. You may find it handy to look up the Bra and ket notations (Dirac notation) To get a better grasp of the mathematics on that link. Edited December 23, 2019 by Mordred
Kartazion Posted December 23, 2019 Author Posted December 23, 2019 12 minutes ago, Mordred said: Yes that link refers to quantum decoherence... So the connection between quantum decoherence and coherent states it would be with Schrödinger's equation... 1
Mordred Posted December 23, 2019 Posted December 23, 2019 (edited) Correct for QM, for QFT the Klien Gordon. +1 for studyi Edited December 23, 2019 by Mordred
Kartazion Posted December 26, 2019 Author Posted December 26, 2019 I deduce that our universe works with a single moving particle. John wheeler had already had this idea with the electron. https://en.wikipedia.org/wiki/One-electron_universe What do you think about?
Mordred Posted December 26, 2019 Posted December 26, 2019 That theory lost popularity among the scientific community long ago. In essence symmetry gauge theory covers all the aspects of the above without specifying a single particle at all spacetime locations. Now under QFT the particle number density varies accordingly to the field strength.
Kartazion Posted December 27, 2019 Author Posted December 27, 2019 I have to understand what a symmetry group is. Here are some links I found. For some, it is difficult to get the paper. - The complete symmetry group of a forced harmonic oscillator - Symmetry groups and conserved quantities for the harmonic oscillator - The symmetry group of the harmonic oscillator and its reduction - U3 symmetry and clustering in the harmonic oscillator shell model 9 hours ago, Mordred said: Now under QFT the particle number density varies accordingly to the field strength. Density is determined only if the particles are correlated / observed. Otherwise you have to stick to the probability of the wave function, only. No? It's why Albert Einstein said: "I like to think the Moon is there even if I am not looking at it."
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now