Anamitra Palit Posted January 18, 2021 Posted January 18, 2021 (edited) This post will be Revised.Pl wait. [it might be necessary to refresh the page or viewing the formulas/equations] In this writing we dive a highly restrictive relation for the metric coefficients in Genera Relativity We start with the the formula \[\sum g^{\alpha\beta}g _{\alpha\beta}=4\] (1) Summation extends over alpha and beta In the orthogonal systems (1) reduces to \[g_{00}g^{00}+ g_{11}g^{11}+ g_{22}g^{22}+ g_{33}g^{33}=4\] (1') Applying the reversed Cauchy Schwarz inequality to (1')we have, \[\left[ g_{00}g^{00}- g_{11}\left(-g^{11}\right)- g_{22}\left(-g^{22}\right)- g_{33}\left(-g^{33}\right)\right]^2\\ \ge\left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\left(\left|(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right)]\] (2) Using (1) and (2) we obtain, \[ 16\ge \left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\ \left[\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right]\] (3) Since for orthogonal coordinate systems we have the formula[1] \[g_{\alpha \alpha}g^{\alpha\alpha}=1\] with no summation on alpha in the above \[\Rightarrow g_{\alpha \alpha}=\frac{1}{g^{\alpha\alpha}}\] we now have, \[ \left [g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right]\\ \left[\left(\frac{1}{g_{00}}\right)^2-\left(\frac{1}{g_{11}}\right)^2-\left(\frac{1}{g_{22}}\right)^2-\left(\frac{1}{g_{33}}\right)^2\right]\le 16\] (4) Equation (4) is highly restrictive. The Reversed Cauchy Schwarz Inequality: We consider 4 real numbers \[a_1,a_2\]and \[b_1,b_2\] We have \[\left(a_1b_1-a_2b_2\right)^2- \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)=\left(a_ab_2-a_2b_1\right)^2\ge 0\] \[\left(a_1b_1-a_2b_2\right)^2\ge \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)\] \[\left(a_1b_1-a_2b_2\right)^2\ge \left|a_1^2-a_2^2\right|\left|b_1^2-b_2^2\right|\] (5) Next we take 2n real numbers a1,a2...an and b1,b2..bn By applying the Cauchy Schwarz inequality we have, [\left(a_2b_2+a_3b_3....+a_nb_n\right)^2\le\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)\] \[\frac{\left(a_2b_2+a_3b_3....+a_nb_n\right)^2}{\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)}\le 1\] \[-1\le \frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}\le 1\] Therefore \[\frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}=\cos \theta\] \[\Rightarrow a_2b_2+a_3b_3....+a_nb_n=\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta \] \[a_1 b_1-a_2b_2-a_3b_3....-a_nb_n= \\ a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\] (6) Applying (5) on the right side of (6) we obtain, \[ a_1 b_1-a_2b_2-a_3b_3....-a_nb_n \ge\\ \sqrt{\left|a_1^2-a_2^2-a_3^2.....-a_n^2\right|}\sqrt{\left|b_1^2-b_2^2-b_3^2.....-b_n^2\right|}\] Or \[-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\\ \le a_1 b_1-a_2b_2-a_3b_3....-a_nb_n \] Therefore \[\left(a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2 \ge \left|a_1^2-a_2^2-a_3^2.....-a_n^2\right| \\ \times \left|b_1^2-b_2^2-b_3^2.....-b_n^2\right|\] References 1. Spiegel M,THeory and Problems of Vector Analysis with an Introduction to Tensor Analysis Schaum's series, McGraw-Hill Book Company,Singapore, 1974,Chapter8; Tensor Analysis, problem 48b,p194 Edited January 18, 2021 by Anamitra Palit
Anamitra Palit Posted January 18, 2021 Author Posted January 18, 2021 (edited) Revised Post: [One may have to refresh the page to view the formulas/equations] In this writing we dive a highly restrictive relation for the metric coefficients in General Relativity We start with the the formula \[\sum g^{\alpha\beta}g _{\alpha\beta}=4\] (1) Summation extends over alpha and beta. In orthogonal systems (1) reduces to \[g_{00}g^{00}+g_{11}g^{11}+g_{22}g^{22}+g_{33}g^{33}=4\] (1' ) Applying the reversed Cauchy Schwarz inequality we have, \[\left[ g_{00}g^{00}- g_{11}\left(-g^{11}\right)- g_{22}\left(-g^{22}\right)- g_{33}\left(-g^{33}\right)\right]^2\\ \ge\left(g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right)\left(\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right)\] (2) Using (1) and (2) we obtain, \[ 16\ge \left|g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right|\\ \left|\left(g^{00}\right)^2-\left(g^{11}\right)^2-\left(g^{22}\right)^2-\left(g^{33}\right)^2\right|\] (3) Since for orthogonal coordinate systems we have the formula[1] \[g_{\alpha \alpha}g^{\alpha\alpha}=1\] with no summation on alpha in the above \[\Rightarrow g_{\alpha \alpha}=\frac{1}{g^{\alpha\alpha}}\] we now have, \[ \left[g_{00}^2-g_{11}^2-g_{22}^2-g_{33}^2\right]\\ \left[\left(\frac{1}{g_{00}}\right)^2-\left(\frac{1}{g_{11}}\right)^2-\left(\frac{1}{g_{22}}\right)^2-\left(\frac{1}{g_{33}}\right)^2\right]\le 16\] (4) Equation (4) is highly restrictive. On The Reversed Cauchy Schwarz Inequality: We consider 4 real numbers \[a_1,a_2\]and \[b_1,b_2\] We have \[\left(a_1b_1-a_2b_2\right)^2- \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)=\left(a_ab_2-a_2b_1\right)^2\ge 0\] \[\left(a_1b_1-a_2b_2\right)^2\ge \left(a_1^2-a_2^2\right)\left(b_1^2-b_2^2\right)\] (5) Next we take 2n real numbers a1,a2...an and b1,b2..bn By applying the Cauchy Schwarz inequality we have, \[\left(a_2b_2+a_3b_3....+a_nb_n\right)^2\le\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)\] \[\frac{\left(a_2b_2+a_3b_3....+a_nb_n\right)^2}{\left(a_2^2+a_3^2+.....a_n^2\right)\left(b_2^2+b_3^2+.....b_n^2\right)}\le 1\] \[-1\le \frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}\le 1\] Therefore \[\frac{a_2b_2+a_3b_3....+a_nb_n}{\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}}=\cos \theta\] \[\Rightarrow a_2b_2+a_3b_3....+a_nb_n=\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta \] \[a_1 b_1-a_2b_2-a_3b_3....-a_nb_n= \\ a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\] (6) \[\left(a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2= \\ \left(a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\right)^2\] (7) Applying (5) on the right side of (7) we obtain, \[\left(a_1b_1-\sqrt{a_2^2+a_3^2+.....a_n^2}\sqrt{b_2^2+b_3^2+.....b_n^2}\cos \theta\right)^2\ge \\ \left(a_1^2-a_2^2-a_3^2.....-a_n^2\right)\left(b_1^2-b_2^2-b_3^2.....-b_n^2\right)\] (8) From (7) and (8) we have, \[ \left (a_1 b_1-a_2b_2-a_3b_3....-a_nb_n\right)^2 \ge\\ \left(a_1^2-a_2^2-a_3^2.....-a_n^2\right)\left(b_1^2-b_2^2-b_3^2.....-b_n^2\right)\]References 1. Spiegel M,Theory and Problems of Vector Analysis with an Introduction to Tensor Analysis Schaum's series, McGraw-Hill Book Company,Singapore, 1974,Chapter8; Tensor Analysis, problem 48b,p194 Edited January 18, 2021 by Anamitra Palit
Anamitra Palit Posted January 18, 2021 Author Posted January 18, 2021 You are requested to discard this thread
Recommended Posts