Jump to content

Recommended Posts

Posted

According to my knowledge, negative deviation of the Law is because:

- solute-solvent intermolecular attraction is larger in magnitude than both solute-solute & solvent-solvent interactions, so solution reaction is exothermic. With very strong interactions, molecules become less able to escape from the liquid surface and form vapor, hence a lower vapor pressure than Raoult's Law prediction.

My question: In terms of intermolecular adhesive force(PE), the above explanation is true. However, the reaction is exothermic (since dH(soln) is negative usually), meaning heat is given out. This increased temperature of the solution hence the KE of molecules. According to the Maxwell-Boltzmann distribution, a higher % of liquid molecules can escape from the liquid surface can into vapor phase. Won't this increase the vapor pressure of the solution instead of a negative deviation?

Vice versa, for endothermic dissolution reaction, positive deviation of the Law occurs, but the temperature of the solution drops, won't this pull down the vapor pressure of solution?

 

Thanks a lot in advance and please correct me if I have made any mistakes!

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.