Ghideon Posted October 7, 2021 Posted October 7, 2021 (edited) 19 hours ago, Trurl said: I have much more to share. I am looking forward to a connection to RSA encryption and prime factorisation of large integers. On 6/20/2021 at 10:50 PM, Trurl said: Plug and chug Ok. I'll try two examples: 8633, 8637. Both are semi primes. NSolve [( x^4/((8637)^2 + x)) == 1] x≈-92.935 x≈92.935 NSolve [( x^4/((8633)^2 + x)) == 1] x≈-92.914 x≈92.914 @Trurl Is this helpful for someone looking for the prime factors of the numbers 8633 and 8637? If so, how? Edited October 7, 2021 by Ghideon grammar
Trurl Posted October 8, 2021 Author Posted October 8, 2021 Ok. I'll try two examples: 8633, 8637. Both are semi primes. NSolve [( x^4/((8637)^2 + x)) == 1] x≈-92.935 x≈92.935 NSolve [( x^4/((8633)^2 + x)) == 1] x≈-92.914 x≈92.914 @Trurl Is this helpful for someone looking for the prime factors of the numbers 8633 and 8637? If so, how? Yes the numbers are too close to estimate. But I still have faith in the Pappy Craylar method. After all 3 < 92 and 3^4/(8637^2+3)=0.000001732 Which Is close to zero where the error is supposed to be near anyway. Remember when I said we needed to test the logarithmic curve of 3*5; 3*7; 3*11 and so forth to find the error change as 3*Prime number increases? I know your smart and are looking for holes in the PC method. That is what you are supposed to do. But I know you are smart enough to understand it. A fix to to great number of possible estimates is to isolate y as x is isolated. Then we will see a better picture of what is happening when SemiPrimes are factored.
Ghideon Posted October 9, 2021 Posted October 9, 2021 20 hours ago, Trurl said: Yes the numbers are too close to estimate. But I still have faith in the Pappy Craylar method. After all 3 < 92 and 3^4/(8637^2+3)=0.000001732 Which Is close to zero where the error is supposed to be near anyway. How did you get the number 3? From your formulas or by some other method? 20 hours ago, Trurl said: I know your smart and are looking for holes in the PC method. That is what you are supposed to do. But I know you are smart enough to understand it. I do not understand. If that is due to my lack of abilities or lack of valid explanations, I'll let others judge. And I am still waiting for a connection to RSA encryption and prime factorisation of large integers.
Trurl Posted October 9, 2021 Author Posted October 9, 2021 (y^3 * pnp^3 - y^2 * pnp + pnp) / (y^3 * pnp + y^2) = pnp^2 y is now isolated as x was. Ready to simplify. No, you uncovered a weakness of the PC method. That is that the error varies between 0 and 1. The first SemiPrime was close to 94. I factored the second to be sure. But by working with the equation for years that it could be a smaller Prime factor. The trouble is without knowing the true error testing numbers less than 94 in the example, narrows the selection but not more useful than division. We need exact results and not an estimate. But does that exist? 3 possible solutions: Isolate y and compare to x Investigate the curve of the graph of the equation between 0 and 1 Find a pattern in the error. An error not spanning such a large range. 3^4/(8637^2+3)=0.000001732 3 < 94 but the number of importance is 0.00001732. It causes 3 to be hidden when starting at 1 and not zero. Questions are good. It is quite possible I am wrong. But I see something or I wouldn’t have put so much effort. From Wikipedia: Semiprimes are highly useful in the area of cryptography and number theory, most notably in public key cryptography, where they are used by RSA and pseudorandom number generators such as Blum Blum Shub. These methods rely on the fact that finding two large primes and multiplying them together (resulting in a semiprime) is computationally simple, whereas finding the original factors appears to be difficult. In the RSA Factoring Challenge, RSA Security offered prizes for the factoring of specific large semiprimes and several prizes were awarded. The original RSA Factoring Challenge was issued in 1991, and was replaced in 2001 by the New RSA Factoring Challenge, which was later withdrawn in 2007.[7] https://en.m.wikipedia.org/wiki/Semiprime
FragmentedCurve Posted October 10, 2021 Posted October 10, 2021 (edited) I'm coming to this thread late and trying to make sense of it. @Trurl, your writing style is difficult to parse. You should also learn [math]\LaTeX[/math] which will make it easier for others to read your math. @Trurl correct me if I'm wrong about your work and motivation. This is what I understand you're trying to do. The motivation is to find a method of approximating the smaller prime factor of a semi-prime. So, if [math]N[/math] is a semi-prime and [math]p[/math] and [math]q[/math] are primes such that [math]q<p[/math] and [math]N=pq[/math], then you want a function [math]f(x)[/math] such that there exists a point [math](n, f(n))[/math] where [math]f(n) \approx q[/math]. And the reason you want such a function is so if [math]n[/math] is known or easy to find, then you limit the search space to find [math]q[/math] and you also approximately know the lower bound for [math]p[/math] because it must be greater than [math]q[/math]. 7 hours ago, Ghideon said: How did you get the number 3? From your formulas or by some other method? I do not understand. If that is due to my lack of abilities or lack of valid explanations, I'll let others judge. And I am still waiting for a connection to RSA encryption and prime factorisation of large integers. I don't think he gets the number 3, it's a counter example. Edited October 10, 2021 by FragmentedCurve
Trurl Posted October 10, 2021 Author Posted October 10, 2021 \frac {\text {pnp}^3 y^3 - \text {pnp} y^2 + \text {pnp}} {\text {pnp} y^3 + y^2} Quote correct me if I'm wrong about your work and motivation. This is what I understand you're trying to do. The motivation is to find a method of approximating the smaller prime factor of a semi-prime. So, if N is a semi-prime and p and q are primes such that q<p and N=pq, then you want a function f(x) such that there exists a point (n,f(n)) where f(n)≈q. And the reason you want such a function is so if n is known or easy to find, then you limit the search space to find q and you also approximately know the lower bound for p because it must be greater than q. Yes that is exactly it. But does it work? I think it works, but does it prove useful? I call "N": pnp and "p and q": "x and y" Given N (I call pnp) we estimate x. And in the latest post I am trying to find y, the larger factor. \frac {\text {pnp}^3 y^3 - \text {pnp} y^2 + \text {pnp}} {\text {pnp} y^3 + y^2} \frac {\text {pnp}^3 y^3 - \text {pnp} y^2 + \text {pnp}} {\text {pnp} y^3 + y^2} \[\frac {\text {pnp}^3 y^3 - \text {pnp} y^2 + \t ext {pnp}} {\text {pnp} y^3 + y^2}\]
Trurl Posted October 11, 2021 Author Posted October 11, 2021 The new "y isolated" equation does not work. It was based on the "x isolated" equation, but does not work. Does anyone see a way to isolate y knowing only pnp?
FragmentedCurve Posted October 15, 2021 Posted October 15, 2021 (edited) I don't really know how to answer your questions because they don't really make sense. From what I can gather, the important thing is you want [math]x>q[/math]. Below I give your conjecture with a simpler function that has the same property along with a proof. Conjecture Given the function [math]f(x)=\frac{x^2}{N}[/math], if N=pq is a semiprime and p>q , then p>x>q when f(x)=1 . Proof [math]1=\frac{x^2}{N} \implies \sqrt{N}=x[/math] Given that p>q , then [math]p^2>N>q^2 \implies p>\sqrt{N}>q \therefore p>x>q[/math]. Edited October 15, 2021 by FragmentedCurve LaTeX issues
Trurl Posted October 17, 2021 Author Posted October 17, 2021 Here are my equations to review. There are quite possibly hundreds of variations. This is what I meant by isolating x and y in the equations. I mean isolated p and q separately, knowing only N. There are 3 equations. I am just getting used to Latex so I hope this is readable. If necessary I will post corrections. But it is these 3 separate equations I want you to test. p^3 - (p^3*N^2) / (N^2 + p) \[p^3 - \frac {N^2 p^3} {N^2 + p}\] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ The above equation should be close to zero, but sometimes the error is closer to 1 (p^3 *N) / (N^2 + p) = fraction fraction/ q = fraction / (N /p) Sqrt[fraction / (N /p)] * N = p^2 \[\frac{N p^3}{N^2+p}=\text{fraction}\] ___________________________________________________________________ The above equations are the second example. q = Sqrt[(N*q^2 + q)/ N] q^2 - (N*q^2 + q)/ N is approximately 0 In the case where N = 85 and q = 17, q^2 - (N*q^2 + q)/ N is 1/x or 1/5 or 0.2 0.2 * 85 = x or 5 in this example \[q^2 - \frac {0\text {approximately}\t ext {is}\left (N q^2 + q \right)} {N}\] Final equations are a proposed method for finding q, knowing only N I have been working with the first equation for awhile. The other 2 are based on the first, but still need tried. There is nothing fancy here. I am just comparing how numbers divide.
Ghideon Posted October 17, 2021 Posted October 17, 2021 @Trurl there are some Latex errors in your message, it is not readable. Here is a screenshot of how it looks like:
Trurl Posted October 17, 2021 Author Posted October 17, 2021 (edited) Note: These are 3 separate groups of equations. They are separated by lines. \[p^3 - \frac {N^2 p^3} {N^2 + p}\] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ The above equation should be close to zero, but sometimes the error is closer to 1 \[\frac{N p^3}{N^2+p}=\text{fraction}\] because q = N/p \[\frac{\text{fraction}}{q}=\frac{\text{fraction}}{\frac{N}{p}}\] \[N \sqrt{\frac{\text{fraction}}{\frac{N}{p}}}=p^2\] ___________________________________________________________________ The above equations are the second example. \[q = \sqrt {\frac {N q^2 + q} {N}}\] square q \[q^2-\frac{ \left(N q^2+q\right)}{N}\] In the case where N = 85 and q = 17, \[q^2 - (N*q^2 + q)/ N\] is 1/x or 1/5 or 0.2 \[0.2 * 85 = x\] or 5 in this example These are 3 separate groups of equations. They are separated by lines. Edited October 17, 2021 by Trurl
Ghideon Posted October 21, 2021 Posted October 21, 2021 On 10/17/2021 at 9:43 PM, Trurl said: The above equation should be close to zero Why? On 10/17/2021 at 9:43 PM, Trurl said: In the case where N = 85 and q = 17, q2−(N∗q2+q)/N is 1/x or 1/5 or 0.2 What is the purpose? Note that [math]q^2-\frac{N q^2+q}{N}=-q/N[/math]
Trurl Posted October 22, 2021 Author Posted October 22, 2021 Quote On 10/17/2021 at 3:43 PM, Trurl said: The above equation should be close to zero Why? Because it is p^2 minus p^2 derived. Same with second equation. It is just how I derived the equations. Does it work? I don’t know. But I am simply comparing patterns in division. Obviously you tried test values. Did it work with your values? i will run more test values. Let me know if you have any more questions or your test values don’t work. -1
Trurl Posted October 28, 2021 Author Posted October 28, 2021 @Ghideon I know you are not going to like my explanation, but q/N is enough to get an estimate of N. Yes I know it is true for all numbers, but using the reciprocal of p and q helps determine where they are positioned on the number line. For semi-Primes my hypothesis is that q/N will reduce to 1/p. Then take 1/p and multiply it by N. You could argue that it is no more useful than recursive division. However, it does give an estimate of where y lies on the number line. And it could further improve estimates of x when determining how far (N minus p) is from (N minus p calculation). I know it seems dumb. Why did we divide in the first place if a simple q/N could solve the solution? And it is a high possibility it doesn’t work. But I am saying the simple solution to the semi-Prime factors problem is helpful. That is: not helpful for a beautiful math equation, but helpful when trying to find a hack to defeat a problem that was never a one-way-function from the start. Clear[pnp, q] pnp = 85 q = 17 Simplify[(q^2 - (pnp*q^2 + q)/ pnp)] Out[139]= 85 Out[140]= 17 -(1/5) ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \ ___ ___ ___ ___ ___ ___ __ In[142]:= Clear[pnp, q] pnp = 85 q = 19 Simplify[(q^2 - (pnp*q^2 + q)/ pnp)] Out[143]= 85 Out[144]= 19 -(19/85) ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \ ___ ___ ___ ___ ___ ___ ___ In[146]:= Clear[pnp, q] pnp = 293*3 q = 293 Simplify[(q^2 - (pnp*q^2 + q)/ pnp)] Out[147]= 879 Out[148]= 293 Out[149]= -(1/3) ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \ ___ ___ ___ ___ ___ ___ ___ _ In[150]:= Clear[pnp, q] pnp = 293*3 q = 291 Simplify[(q^2 - (pnp*q^2 + q)/ pnp)] Out[151]= 879 Out[152]= 291 Out[153]= -(97/293) In[154]:= N[-(97/293)] In[155]:= -0.3310580204778157`* 293*3 Out[155]= -291.
Ghideon Posted November 6, 2021 Posted November 6, 2021 On 3/3/2021 at 7:15 PM, Trurl said: Remember I am claiming I can factor semi-Primes and thus RSA cryptography would be no more. I think that current RSA encryption is quite unaffected by the things presented in this tread.
Trurl Posted November 16, 2021 Author Posted November 16, 2021 (edited) You must tell me why RSA is not affected by this thread. We can agree that RSA was based on the Prime factorization problem. That is factoring Semi-Primes into the Prime factors. So you must not trust my algebraic equations that estimate where the factors of semi-Primes occur. That is the basis of my work. I think I have stated what they do. But in your test where N=p*q where do you not believe p cannot be found knowing only N? \(q\sqrt {\frac {\text {pnp}^3} {\text {pnp} q^2 + q}}\) Edited November 16, 2021 by Trurl Latex
Ghideon Posted November 17, 2021 Posted November 17, 2021 (edited) On 11/16/2021 at 1:13 AM, Trurl said: You must tell me why RSA is not affected by this thread. The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". So far this thread does not contain any intelligible description of a new method for factorisation and certainly no improvements over the current state of the art methods. No-one seems to understand your approach towards factoring but still there are several members that have explained why it can not work. Five pages into the discussion I’m pretty confident that there will never be any useful description provided. Equations and associated claims have been dismissed by simple counter examples. The result is that my current level of confidence in RSA is not changed by anything provided in this thread and my best guess is that my opinion is shared by a. wast majority of users of RSA encryption. Edited November 17, 2021 by Ghideon
Trurl Posted November 27, 2021 Author Posted November 27, 2021 Klapaucius, uh um, I mean Ghideon, You act as there is noting of value in this tread. Sure, breaking RSA would be quite a feat. But you must admit there is no other method that does it. There is no guarantee the Pappy Craylar Method works. And I have moved on to other projects. However, we had an active discussion that may lead to something that might find a different approach. You see, The Pappy Craylar Method is based on the fact that if you increase the size of one factor you must decrease the other. And since there is only one way the Semi-Prime factors go together, the equation to find the factors eliminates possibilities. Sure, the number of possibilities isn’t only one and sometimes the possibilities are further or closer to zero. But until a solution exists, the method leads to the ability to guess the factors by trial and error. See my construction of the 2 graphs that intersect at 5. Of course, I already new the answer, but don’t you find the PC method simple yet interesting? In[89]:= pnp = 85 x = 5 Show[{Plot[(x^4/(pnp^2 + x)), {x, 0, 10}], Plot[(pnp - (x*Sqrt[(pnp^3/(pnp* x^2 + x))])), {x, 0, 10}]}] Out[89]= 85 Out[90]= 5 In[109]:= Clear[pnp, x] pnp = 8637 {Plot[(x^4/(pnp^2 + x)), {x, 0, 3}] Plot[(pnp - (x*Sqrt[(pnp^3/(pnp* x^2 + x))])), {x, 0, 3}]} Out[110]= 8637 Does this work for every Semi-Prime? Maybe, maybe not. This is all I have to share. I am moving on to other projects. So, unless some idea comes along, I will not post. Is my last message Simple, yet interesting? -1
Trurl Posted April 16, 2022 Author Posted April 16, 2022 p = 3 (p^4/((p*Data)^2 + p) ) N[(Data^4/((p*Data)^2 + Data) )] Data = Import["C:\\Users\\Trurl\\Documents\\20220405PrimeTable.csv", "CSV"] These 2 equations are the pattern. N[(Data^4/((p*Data)^2+Data) )] is the pattern to find the smaller factor and (p^4/((p*Data)^2+p) ) is the equation to find the pattern of the error. I post here because I think they were being confused. The start is the first 1000 Primes imported from Wikipedia. Notice 2 is not always considered a Prime number and yields imaginary results. I know I have moved on from this math problem but I thought this post was significant. Looking at the numbers over 1000 instead of 85=5*17. I'll upload the file for download. {{"2", 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71}, {73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173}, {179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281}, {283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409}, {419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541}, {547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659}, {661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809}, {811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941}, {947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069}, {1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223}, {1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373}, {1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511}, {1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657}, {1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811}, {1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987}, {1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129}, {2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287}, {2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423}, {2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617}, {2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741}, {2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903}, {2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079}, {3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257}, {3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413}, {3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571}, {3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727}, {3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907}, {3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057}, {4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231}, {4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409}, {4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583}, {4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751}, {4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937}, {4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087}, {5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279}, {5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443}, {5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639}, {5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791}, {5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939}, {5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133}, {6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301}, {6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473}, {6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673}, {6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833}, {6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997}, {7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207}, {7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411}, {7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561}, {7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723}, {7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919}} p = 3 (p^4/((p*Data)^2 + p) ) 3 {{81/(3 + 9 ("2")^2), 27/28, 27/76, 27/148, 27/364, 27/508, 27/868, 27/ 1084, 27/1588, 27/2524, 27/2884, 27/4108, 27/5044, 27/5548, 27/6628, 27/ 8428, 27/10444, 27/11164, 27/13468, 27/15124}, {27/15988, 27/18724, 27/ 20668, 27/23764, 27/28228, 27/30604, 27/31828, 27/34348, 27/35644, 27/38308, 27/48388, 27/51484, 27/56308, 27/57964, 27/66604, 27/68404, 27/73948, 27/ 79708, 27/83668, 27/89788}, {27/96124, 27/98284, 27/109444, 27/111748, 27/ 116428, 27/118804, 27/133564, 27/149188, 27/154588, 27/157324, 27/162868, 27/171364, 27/174244, 27/189004, 27/198148, 27/207508, 27/217084, 27/220324, 27/230188, 27/236884}, {27/240268, 27/257548, 27/282748, 27/290164, 27/ 293908, 27/301468, 27/328684, 27/340708, 27/361228, 27/365404, 27/373828, 27/386644, 27/404068, 27/417388, 27/430924, 27/440068, 27/453964, 27/472828, 27/482404, 27/501844}, {27/526684, 27/531724, 27/557284, 27/562468, 27/ 578164, 27/588748, 27/604804, 27/626548, 27/637564, 27/643108, 27/654268, 27/688324, 27/711508, 27/723244, 27/747004, 27/759028, 27/777244, 27/814324, 27/820588, 27/878044}, {27/897628, 27/930748, 27/950908, 27/971284, 27/ 978124, 27/998788, 27/1033708, 27/1054948, 27/1076404, 27/1083604, 27/ 1105348, 27/1127308, 27/1142068, 27/1149484, 27/1194484, 27/1232644, 27/ 1240348, 27/1255828, 27/1279228, 27/1302844}, {27/1310764, 27/1358788, 27/ 1374988, 27/1399468, 27/1432444, 27/1474204, 27/1508044, 27/1550884, 27/ 1585588, 27/1611868, 27/1638364, 27/1656148, 27/1692004, 27/1719148, 27/ 1737364, 27/1774084, 27/1792588, 27/1858108, 27/1905628, 27/1963444}, {27/ 1973164, 27/2022124, 27/2031988, 27/2051788, 27/2061724, 27/2111764, 27/ 2182828, 27/2203348, 27/2213644, 27/2234308, 27/2307388, 27/2328484, 27/ 2339068, 27/2360308, 27/2467948, 27/2489764, 27/2533684, 27/2589124, 27/ 2633908, 27/2656444}, {27/2690428, 27/2724628, 27/2805268, 27/2828524, 27/ 2863588, 27/2898868, 27/2946244, 27/2982028, 27/3054244, 27/3078508, 27/ 3115084, 27/3127324, 27/3188884, 27/3201268, 27/3238564, 27/3301204, 27/ 3313804, 27/3377164, 27/3389908, 27/3428284}, {27/3544708, 27/3570844, 27/ 3583948, 27/3610228, 27/3649828, 27/3689644, 27/3743068, 27/3783388, 27/ 3823924, 27/3974404, 27/3988228, 27/4057708, 27/4113724, 27/4184284, 27/ 4226908, 27/4269748, 27/4327204, 27/4414108, 27/4443268, 27/4487188}, {27/ 4531324, 27/4546084, 27/4590508, 27/4680004, 27/4755244, 27/4892188, 27/ 4907524, 27/4938268, 27/4984564, 27/5000044, 27/5046628, 27/5077804, 27/ 5093428, 27/5124748, 27/5219284, 27/5235124, 27/5282788, 27/5556964, 27/ 5606068, 27/5655388}, {27/5721484, 27/5871604, 27/5955844, 27/6074788, 27/ 6108988, 27/6126124, 27/6160468, 27/6212164, 27/6281428, 27/6316204, 27/ 6333628, 27/6386044, 27/6491524, 27/6580084, 27/6597868, 27/6633508, 27/ 6651364, 27/6687148, 27/6741004, 27/6849364}, {27/6958588, 27/7031884, 27/ 7142548, 27/7198204, 27/7235428, 27/7291444, 27/7366468, 27/7404124, 27/ 7479724, 27/7517668, 27/7651228, 27/7689604, 27/7747348, 27/7766644, 27/ 7805308, 27/7863484, 27/7882924, 27/7941388, 27/8039308, 27/8236948}, {27/ 8296708, 27/8336668, 27/8356684, 27/8598748, 27/8639428, 27/8659804, 27/ 8762044, 27/8885524, 27/8906188, 27/9009868, 27/9093244, 27/9156028, 27/ 9219028, 27/9282244, 27/9473188, 27/9537268, 27/9580108, 27/9601564, 27/ 9730804, 27/9839164}, {27/9969988, 27/10057684, 27/10234228, 27/10389964, 27/10457068, 27/10501924, 27/10524388, 27/10569388, 27/10591924, 27/ 10704964, 27/10841404, 27/10909948, 27/10978708, 27/11186284, 27/11209468, 27/11395804, 27/11419204, 27/11678188, 27/11749324, 27/11844508}, {27/ 11916148, 27/11964028, 27/11988004, 27/12036028, 27/12132364, 27/12204868, 27/12326188, 27/12350524, 27/12472564, 27/12644428, 27/12767908, 27/ 12842284, 27/12991684, 27/13016668, 27/13066708, 27/13091764, 27/13217404, 27/13368964, 27/13394308, 27/13597924}, {27/13623484, 27/13700308, 27/ 13751644, 27/13777348, 27/13906228, 27/14009764, 27/14244124, 27/14559628, 27/14612548, 27/14692108, 27/14798524, 27/15012508, 27/15039364, 27/ 15093148, 27/15201004, 27/15417868, 27/15445084, 27/15499588, 27/15608884, 27/15691108}, {27/15773548, 27/15828628, 27/15994444, 27/16022164, 27/ 16328668, 27/16412764, 27/16440844, 27/16525228, 27/16581604, 27/16666348, 27/16864924, 27/16950388, 27/17007484, 27/17036068, 27/17121964, 27/ 17179348, 27/17265604, 27/17438764, 27/17525668, 27/17612788}, {27/17816908, 27/17875444, 27/17963428, 27/18140044, 27/18258268, 27/18347188, 27/ 18406588, 27/18795028, 27/19066324, 27/19217884, 27/19339564, 27/19400548, 27/19492204, 27/19522804, 27/19614748, 27/19953724, 27/20139844, 27/ 20170948, 27/20420644, 27/20546068}, {27/20608924, 27/20798068, 27/21019828, 27/21178948, 27/21210844, 27/21274708, 27/21402724, 27/21498988, 27/ 21595468, 27/21659908, 27/21692164, 27/21756748, 27/21853804, 27/21983548, 27/22048564, 27/22081108, 27/22178884, 27/22342324, 27/22375084, 27/ 22539244}, {27/22671004, 27/22737028, 27/22968868, 27/23135188, 27/23335564, 27/23369044, 27/23469628, 27/23536804, 27/23570428, 27/23840284, 27/ 24077668, 27/24145708, 27/24247948, 27/24384604, 27/24487348, 27/24555964, 27/24865924, 27/25004308, 27/25177828, 27/25282228}, {27/25386844, 27/ 25526668, 27/25701988, 27/25913164, 27/26160628, 27/26231548, 27/26338108, 27/26444884, 27/26480524, 27/26982004, 27/27018004, 27/27198364, 27/ 27343084, 27/27415588, 27/27670108, 27/27743044, 27/27889204, 27/28109164, 27/28219468, 27/28440724}, {27/28514668, 27/28625764, 27/28997644, 27/ 29184484, 27/29221924, 27/29522308, 27/30013708, 27/30089668, 27/30127684, 27/30356284, 27/30470908, 27/30547444, 27/30777628, 27/30893044, 27/ 31047268, 27/31124524, 27/31279324, 27/31707004, 27/31746028, 27/ 31824148}, {27/31863244, 27/32098324, 27/32650204, 27/32689804, 27/32808748, 27/32927908, 27/33047284, 27/33126988, 27/33246724, 27/33286684, 27/ 33526948, 27/33607228, 27/33848644, 27/33888964, 27/34090924, 27/34131388, 27/34455964, 27/34496644, 27/34822948, 27/34945708}, {27/35356468, 27/ 35686804, 27/35852548, 27/35935564, 27/35977108, 27/36060268, 27/36101884, 27/36561244, 27/36729004, 27/36981364, 27/37107868, 27/37319188, 27/ 37361524, 27/37446268, 27/37573564, 27/37616044, 27/37743628, 27/37956748, 27/37999444, 27/38256124}, {27/38470684, 27/38513668, 27/38728948, 27/ 39031348, 27/39161308, 27/39248068, 27/39378388, 27/39552484, 27/39683308, 27/39814348, 27/40164844, 27/40428724, 27/40472788, 27/40560988, 27/ 40870444, 27/41003428, 27/41092204, 27/41270044, 27/41492884, 27/ 41671588}, {27/41805868, 27/41940364, 27/42435364, 27/42570868, 27/42616084, 27/42842524, 27/43160548, 27/43251628, 27/43388428, 27/43800124, 27/ 43845988, 27/44075668, 27/44398228, 27/44490604, 27/44536828, 27/44768308, 27/45093388, 27/45186484, 27/45372964, 27/45793948}, {27/45887764, 27/ 46028668, 27/46075684, 27/46169788, 27/46311124, 27/46358284, 27/46641748, 27/46736428, 27/47211268, 27/47736364, 27/48024004, 27/48072028, 27/ 48168148, 27/48312508, 27/48457084, 27/48505324, 27/48650188, 27/49183204, 27/49231804, 27/49377748}, {27/49767988, 27/49914724, 27/50208844, 27/ 50257948, 27/50405404, 27/50700964, 27/51096388, 27/51145924, 27/51245068, 27/51393964, 27/51742228, 27/51841948, 27/51891844, 27/52341988, 27/ 52945204, 27/53197564, 27/53349268, 27/53399884, 27/53653324, 27/ 53704084}, {27/53958244, 27/54009148, 27/54264028, 27/54417244, 27/54468364, 27/54724324, 27/54775588, 27/55032268, 27/55186564, 27/55392628, 27/ 56168788, 27/56428708, 27/56480764, 27/56741404, 27/56950348, 27/57107308, 27/57369388, 27/57842644, 27/58000828, 27/58317844}, {27/58635724, 27/ 58688788, 27/59167444, 27/59327428, 27/59434204, 27/59594548, 27/59755108, 27/60238084, 27/60291868, 27/60561148, 27/60939148, 27/61101508, 27/ 61209868, 27/61264084, 27/61372588, 27/62025628, 27/62080204, 27/62408164, 27/62572468, 27/63011668}, {27/63231844, 27/63397228, 27/63562828, 27/ 64060924, 27/64505308, 27/64560964, 27/64672348, 27/64839604, 27/64895404, 27/65062948, 27/65230708, 27/65510788, 27/65679124, 27/66016444, 27/ 66354628, 27/66863524, 27/66920188, 27/67090324, 27/67203868, 27/ 67716004}, {27/67944244, 27/68631268, 27/68746108, 27/68803564, 27/68918548, 27/69091204, 27/69148804, 27/69494908, 27/69610468, 27/70015684, 27/ 70887964, 27/71179924, 27/71355388, 27/71706964, 27/72118228, 27/72294844, 27/72589684, 27/72944284, 27/73003468, 27/73121908}, {27/73299748, 27/ 73537204, 27/73715548, 27/74013268, 27/74072884, 27/74192188, 27/74610508, 27/74790148, 27/74970004, 27/75090028, 27/75270244, 27/75330364, 27/ 75631324, 27/75691588, 27/76174564, 27/76537804, 27/76780444, 27/77327788, 27/77449684, 27/77632708}, {27/77999404, 27/78060604, 27/78244348, 27/ 78428308, 27/78612484, 27/79474828, 27/79660228, 27/80093668, 27/80217724, 27/80466124, 27/80777164, 27/81026428, 27/81401044, 27/81964588, 27/ 82090084, 27/82152868, 27/82278508, 27/83034364, 27/83413588, 27/ 83603524}, {27/83666884, 27/84174628, 27/84365428, 27/84556444, 27/85002988, 27/85322668, 27/85771228, 27/85899604, 27/86865484, 27/87059308, 27/ 87253348, 27/87447604, 27/87706948, 27/87901708, 27/88031668, 27/88096684, 27/88487284, 27/88682908, 27/88813444, 27/88878748}, {27/89074804, 27/ 89795524, 27/89992588, 27/90058324, 27/90189868, 27/90783004, 27/90849028, 27/90981148, 27/91378084, 27/91444324, 27/91643188, 27/91775884, 27/ 92640748, 27/92840908, 27/93041284, 27/93174988, 27/93442684, 27/93777844, 27/94854388, 27/95394964}, {27/95462644, 27/95665828, 27/95801404, 27/ 95869228, 27/96004948, 27/96072844, 27/96412684, 27/96889468, 27/97094164, 27/97230748, 27/97504204, 27/97846564, 27/98052268, 27/98739508, 27/ 98877244, 27/98946148, 27/99153004, 27/100190524, 27/100329268, 27/ 100607044}, {27/100954804, 27/101163748, 27/101372908, 27/101652124, 27/ 101861788, 27/102281764, 27/102421948, 27/102632404, 27/102702604, 27/ 102913348, 27/103053964, 27/103265068, 27/103335484, 27/103687924, 27/ 103758484, 27/104323828, 27/104536228, 27/105245788, 27/105387988, 27/ 105815164}, {27/106314628, 27/107317084, 27/107532508, 27/108252148, 27/ 108396364, 27/109046524, 27/109336108, 27/109553548, 27/109698628, 27/ 109916428, 27/110425468, 27/110643988, 27/110862724, 27/111227764, 27/ 111300844, 27/111666604, 27/112106308, 27/112399924, 27/112767484, 27/ 112841068}, {27/113209348, 27/113504404, 27/113947708, 27/114317788, 27/ 115208428, 27/115282804, 27/115431628, 27/115729564, 27/115953268, 27/ 116102524, 27/116401324, 27/117075028, 27/117450148, 27/117675508, 27/ 117901084, 27/117976324, 27/118202188, 27/118579108, 27/119032204, 27/ 119107804}, {27/119486164, 27/119713468, 27/119940988, 27/120168724, 27/ 120472708, 27/120700948, 27/121081828, 27/121310644, 27/121386964, 27/ 121616068, 27/121845388, 27/122074924, 27/122457964, 27/122764828, 27/ 123687724, 27/123918988, 27/124768804, 27/124846204, 27/125543884, 27/ 125699188}, {27/126010084, 27/126399244, 27/127570324, 27/127883524, 27/ 128589628, 27/128746804, 27/128825428, 27/129218908, 27/129455284, 27/ 129534124, 27/129770788, 27/129928684, 27/130640404, 27/130957348, 27/ 131433484, 27/132149308, 27/132787228, 27/133026844, 27/133106764, 27/ 133586788}, {27/133827124, 27/134228164, 27/134308444, 27/134710204, 27/ 134790628, 27/135032044, 27/135434884, 27/135999868, 27/136161508, 27/ 137133364, 27/137214508, 27/137864524, 27/137945884, 27/138353044, 27/ 138434548, 27/138842428, 27/139659988, 27/139823788, 27/139905724, 27/ 140069668}, {27/140397844, 27/141055348, 27/141302308, 27/141549484, 27/ 141631924, 27/142127068, 27/142788604, 27/143119948, 27/143285764, 27/ 143534668, 27/144782428, 27/144865804, 27/145283044, 27/145366564, 27/ 145617268, 27/145784524, 27/146035588, 27/146286868, 27/146622244, 27/ 146874028}, {27/147042004, 27/147546508, 27/147799084, 27/148136188, 27/ 148642564, 27/148811548, 27/149403748, 27/149912284, 27/150336724, 27/ 151357828, 27/151613644, 27/152125924, 27/152382388, 27/152467924, 27/ 153410404, 27/153753844, 27/154527988, 27/154958908, 27/155217748, 27/ 155822548}, {27/155995564, 27/156082108, 27/156341884, 27/156775324, 27/ 157122508, 27/157383148, 27/157557028, 27/157818028, 27/159126268, 27/ 159738628, 27/160176748, 27/160264444, 27/160791124, 27/161230684, 27/ 161318668, 27/162023404, 27/162111604, 27/162906484, 27/163969348, 27/ 164768764}, {27/165035668, 27/165748468, 27/166552204, 27/166820548, 27/ 166910044, 27/167716588, 27/167896084, 27/168165508, 27/168255364, 27/ 168705004, 27/169065148, 27/169515868, 27/169786588, 27/170057524, 27/ 170419108, 27/170600044, 27/170871628, 27/170962204, 27/171415444, 27/ 171506164}, {27/172050988, 27/172232788, 27/172505668, 27/172778764, 27/ 172869844, 27/173416828, 27/173599348, 27/174238924, 27/175062964, 27/ 175246348, 27/175521604, 27/176440684, 27/176624788, 27/176993284, 27/ 177269908, 27/177454444, 27/177823804, 27/178008628, 27/178656268, 27/ 178934188}, {27/179119588, 27/179769244, 27/180327028, 27/180513148, 27/ 180606244, 27/182005564, 27/182192548, 27/183316468, 27/183597988, 27/ 183879724, 27/184443844, 27/185008828, 27/185669068, 27/185952388, 27/ 186141388, 27/186235924, 27/186425068, 27/187277404, 27/187561948, 27/ 188131684}} N[(p^4/((p*Data)^2 + p) )] {{81./(3. + 9. ("2")^2), 0.964286, 0.355263, 0.182432, 0.0741758, 0.0531496, 0.031106, 0.0249077, 0.0170025, 0.0106973, 0.009362, 0.00657254, 0.00535289, 0.00486662, 0.00407363, 0.00320361, 0.00258522, 0.00241849, 0.00200475, 0.00178524}, {0.00168877, 0.001442, 0.00130637, 0.00113617, 0.000956497, 0.000882238, 0.00084831, 0.000786072, 0.000757491, 0.000704814, 0.00055799, 0.000524435, 0.000479506, 0.000465806, 0.000405381, 0.000394714, 0.000365121, 0.000338736, 0.000322704, 0.000300708}, {0.000280887, 0.000274714, 0.000246702, 0.000241615, 0.000231903, 0.000227265, 0.00020215, 0.00018098, 0.000174658, 0.00017162, 0.000165778, 0.000157559, 0.000154955, 0.000142854, 0.000136262, 0.000130115, 0.000124376, 0.000122547, 0.000117295, 0.00011398}, {0.000112375, 0.000104835, 0.0000954914, 0.0000930508, 0.0000918655, 0.0000895617, 0.0000821458, 0.0000792467, 0.000074745, 0.0000738908, 0.0000722257, 0.0000698317, 0.0000668204, 0.000064688, 0.0000626561, 0.0000613542, 0.0000594761, 0.0000571032, 0.0000559697, 0.0000538016}, {0.0000512641, 0.0000507782, 0.0000484493, 0.0000480027, 0.0000466996, 0.00004586, 0.0000446426, 0.0000430933, 0.0000423487, 0.0000419836, 0.0000412675, 0.0000392257, 0.0000379476, 0.0000373318, 0.0000361444, 0.0000355718, 0.0000347381, 0.0000331563, 0.0000329032, 0.0000307502}, {0.0000300793, 0.0000290089, 0.0000283939, 0.0000277983, 0.0000276039, 0.0000270328, 0.0000261196, 0.0000255937, 0.0000250835, 0.0000249169, 0.0000244267, 0.0000239509, 0.0000236413, 0.0000234888, 0.0000226039, 0.0000219041, 0.0000217681, 0.0000214998, 0.0000211065, 0.0000207239}, {0.0000205987, 0.0000198706, 0.0000196365, 0.000019293, 0.0000188489, 0.000018315, 0.000017904, 0.0000174094, 0.0000170284, 0.0000167508, 0.0000164799, 0.0000163029, 0.0000159574, 0.0000157055, 0.0000155408, 0.0000152191, 0.000015062, 0.0000145309, 0.0000141686, 0.0000137513}, {0.0000136836, 0.0000133523, 0.0000132875, 0.0000131593, 0.0000130958, 0.0000127855, 0.0000123693, 0.0000122541, 0.0000121971, 0.0000120843, 0.0000117015, 0.0000115955, 0.0000115431, 0.0000114392, 0.0000109403, 0.0000108444, 0.0000106564, 0.0000104282, 0.0000102509, 0.000010164}, {0.0000100356, 9.90961*10^-6, 9.62475*10^-6, 9.54561*10^-6, 9.42873*10^-6, 9.31398*10^-6, 9.16421*10^-6, 9.05424*10^-6, 8.84016*10^-6, 8.77048*10^-6, 8.6675*10^-6, 8.63358*10^-6, 8.46691*10^-6, 8.43416*10^-6, 8.33703*10^-6, 8.17883*10^-6, 8.14774*10^-6, 7.99487*10^-6, 7.96482*10^-6, 7.87566*10^-6}, {7.61699*10^-6, 7.56124*10^-6, 7.53359*10^-6, 7.47875*10^-6, 7.39761*10^-6, 7.31778*10^-6, 7.21333*10^-6, 7.13646*10^-6, 7.06081*10^-6, 6.79347*10^-6, 6.76992*10^-6, 6.654*10^-6, 6.5634*10^-6, 6.45272*10^-6, 6.38765*10^-6, 6.32356*10^-6, 6.23959*10^-6, 6.11675*10^-6, 6.07661*10^-6, 6.01713*10^-6}, {5.95852*10^-6, 5.93918*10^-6, 5.8817*10^-6, 5.76923*10^-6, 5.67794*10^-6, 5.519*10^-6, 5.50176*10^-6, 5.4675*10^-6, 5.41672*10^-6, 5.39995*10^-6, 5.35011*10^-6, 5.31726*10^-6, 5.30095*10^-6, 5.26855*10^-6, 5.17312*10^-6, 5.15747*10^-6, 5.11094*10^-6, 4.85877*10^-6, 4.81621*10^-6, 4.77421*10^-6}, {4.71906*10^-6, 4.5984*10^-6, 4.53336*10^-6, 4.4446*10^-6, 4.41972*10^-6, 4.40735*10^-6, 4.38278*10^-6, 4.34631*10^-6, 4.29839*10^-6, 4.27472*10^-6, 4.26296*10^-6, 4.22797*10^-6, 4.15927*10^-6, 4.10329*10^-6, 4.09223*10^-6, 4.07024*10^-6, 4.05932*10^-6, 4.0376*10^-6, 4.00534*10^-6, 3.94197*10^-6}, {3.8801*10^-6, 3.83965*10^-6, 3.78016*10^-6, 3.75094*10^-6, 3.73164*10^-6, 3.70297*10^-6, 3.66526*10^-6, 3.64662*10^-6, 3.60976*10^-6, 3.59154*10^-6, 3.52885*10^-6, 3.51123*10^-6, 3.48506*10^-6, 3.4764*10^-6, 3.45918*10^-6, 3.43359*10^-6, 3.42512*10^-6, 3.39991*10^-6, 3.3585*10^-6, 3.27791*10^-6}, {3.2543*10^-6, 3.2387*10^-6, 3.23095*10^-6, 3.13999*10^-6, 3.12521*10^-6, 3.11785*10^-6, 3.08147*10^-6, 3.03865*10^-6, 3.0316*10^-6, 2.99671*10^-6, 2.96924*10^-6, 2.94888*10^-6, 2.92873*10^-6, 2.90878*10^-6, 2.85015*10^-6, 2.831*10^-6, 2.81834*10^-6, 2.81204*10^-6, 2.77469*10^-6, 2.74414*10^-6}, {2.70813*10^-6, 2.68451*10^-6, 2.63821*10^-6, 2.59866*10^-6, 2.58199*10^-6, 2.57096*10^-6, 2.56547*10^-6, 2.55455*10^-6, 2.54911*10^-6, 2.52219*10^-6, 2.49045*10^-6, 2.47481*10^-6, 2.45931*10^-6, 2.41367*10^-6, 2.40868*10^-6, 2.36929*10^-6, 2.36444*10^-6, 2.312*10^-6, 2.298*10^-6, 2.27954*10^-6}, {2.26583*10^-6, 2.25677*10^-6, 2.25225*10^-6, 2.24326*10^-6, 2.22545*10^-6, 2.21223*10^-6, 2.19046*10^-6, 2.18614*10^-6, 2.16475*10^-6, 2.13533*10^-6, 2.11468*10^-6, 2.10243*10^-6, 2.07825*10^-6, 2.07426*10^-6, 2.06632*10^-6, 2.06237*10^-6, 2.04276*10^-6, 2.0196*10^-6, 2.01578*10^-6, 1.9856*10^-6}, {1.98187*10^-6, 1.97076*10^-6, 1.9634*10^-6, 1.95974*10^-6, 1.94158*10^-6, 1.92723*10^-6, 1.89552*10^-6, 1.85444*10^-6, 1.84773*10^-6, 1.83772*10^-6, 1.82451*10^-6, 1.7985*10^-6, 1.79529*10^-6, 1.78889*10^-6, 1.7762*10^-6, 1.75121*10^-6, 1.74813*10^-6, 1.74198*10^-6, 1.72978*10^-6, 1.72072*10^-6}, {1.71173*10^-6, 1.70577*10^-6, 1.68809*10^-6, 1.68517*10^-6, 1.65353*10^-6, 1.64506*10^-6, 1.64225*10^-6, 1.63387*10^-6, 1.62831*10^-6, 1.62003*10^-6, 1.60096*10^-6, 1.59288*10^-6, 1.58754*10^-6, 1.58487*10^-6, 1.57692*10^-6, 1.57165*10^-6, 1.5638*10^-6, 1.54827*10^-6, 1.5406*10^-6, 1.53298*10^-6}, {1.51541*10^-6, 1.51045*10^-6, 1.50305*10^-6, 1.48842*10^-6, 1.47878*10^-6, 1.47162*10^-6, 1.46687*10^-6, 1.43655*10^-6, 1.41611*10^-6, 1.40494*10^-6, 1.3961*10^-6, 1.39171*10^-6, 1.38517*10^-6, 1.383*10^-6, 1.37652*10^-6, 1.35313*10^-6, 1.34063*10^-6, 1.33856*10^-6, 1.32219*10^-6, 1.31412*10^-6}, {1.31011*10^-6, 1.2982*10^-6, 1.2845*10^-6, 1.27485*10^-6, 1.27293*10^-6, 1.26911*10^-6, 1.26152*10^-6, 1.25587*10^-6, 1.25026*10^-6, 1.24654*10^-6, 1.24469*10^-6, 1.24099*10^-6, 1.23548*10^-6, 1.22819*10^-6, 1.22457*10^-6, 1.22276*10^-6, 1.21737*10^-6, 1.20847*10^-6, 1.2067*10^-6, 1.19791*10^-6}, {1.19095*10^-6, 1.18749*10^-6, 1.1755*10^-6, 1.16705*10^-6, 1.15703*10^-6, 1.15537*10^-6, 1.15042*10^-6, 1.14714*10^-6, 1.1455*10^-6, 1.13254*10^-6, 1.12137*10^-6, 1.11821*10^-6, 1.1135*10^-6, 1.10726*10^-6, 1.10261*10^-6, 1.09953*10^-6, 1.08582*10^-6, 1.07981*10^-6, 1.07237*10^-6, 1.06794*10^-6}, {1.06354*10^-6, 1.05772*10^-6, 1.0505*10^-6, 1.04194*10^-6, 1.03209*10^-6, 1.02929*10^-6, 1.02513*10^-6, 1.02099*10^-6, 1.01962*10^-6, 1.00067*10^-6, 9.99334*10^-7, 9.92707*10^-7, 9.87453*10^-7, 9.84841*10^-7, 9.75782*10^-7, 9.73217*10^-7, 9.68117*10^-7, 9.60541*10^-7, 9.56786*10^-7, 9.49343*10^-7}, {9.46881*10^-7, 9.43206*10^-7, 9.3111*10^-7, 9.25149*10^-7, 9.23964*10^-7, 9.14563*10^-7, 8.99589*10^-7, 8.97318*10^-7, 8.96186*10^-7, 8.89437*10^-7, 8.86091*10^-7, 8.83871*10^-7, 8.77261*10^-7, 8.73983*10^-7, 8.69642*10^-7, 8.67483*10^-7, 8.6319*10^-7, 8.51547*10^-7, 8.505*10^-7, 8.48412*10^-7}, {8.47371*10^-7, 8.41165*10^-7, 8.26947*10^-7, 8.25946*10^-7, 8.22951*10^-7, 8.19973*10^-7, 8.17011*10^-7, 8.15045*10^-7, 8.1211*10^-7, 8.11135*10^-7, 8.05322*10^-7, 8.03399*10^-7, 7.97669*10^-7, 7.9672*10^-7, 7.92*10^-7, 7.91061*10^-7, 7.83609*10^-7, 7.82685*10^-7, 7.75351*10^-7, 7.72627*10^-7}, {7.63651*10^-7, 7.56582*10^-7, 7.53085*10^-7, 7.51345*10^-7, 7.50477*10^-7, 7.48747*10^-7, 7.47883*10^-7, 7.38487*10^-7, 7.35114*10^-7, 7.30097*10^-7, 7.27608*10^-7, 7.23488*10^-7, 7.22669*10^-7, 7.21033*10^-7, 7.1859*10^-7, 7.17779*10^-7, 7.15353*10^-7, 7.11336*10^-7, 7.10537*10^-7, 7.05769*10^-7}, {7.01833*10^-7, 7.0105*10^-7, 6.97153*10^-7, 6.91752*10^-7, 6.89456*10^-7, 6.87932*10^-7, 6.85655*10^-7, 6.82637*10^-7, 6.80387*10^-7, 6.78147*10^-7, 6.7223*10^-7, 6.67842*10^-7, 6.67115*10^-7, 6.65664*10^-7, 6.60624*10^-7, 6.58482*10^-7, 6.57059*10^-7, 6.54228*10^-7, 6.50714*10^-7, 6.47923*10^-7}, {6.45842*10^-7, 6.43771*10^-7, 6.36262*10^-7, 6.34237*10^-7, 6.33564*10^-7, 6.30215*10^-7, 6.25571*10^-7, 6.24254*10^-7, 6.22286*10^-7, 6.16437*10^-7, 6.15792*10^-7, 6.12583*10^-7, 6.08132*10^-7, 6.0687*10^-7, 6.0624*10^-7, 6.03105*10^-7, 5.98757*10^-7, 5.97524*10^-7, 5.95068*10^-7, 5.89598*10^-7}, {5.88392*10^-7, 5.86591*10^-7, 5.85992*10^-7, 5.84798*10^-7, 5.83013*10^-7, 5.8242*10^-7, 5.78881*10^-7, 5.77708*10^-7, 5.71897*10^-7, 5.65607*10^-7, 5.62219*10^-7, 5.61657*10^-7, 5.60536*10^-7, 5.58861*10^-7, 5.57194*10^-7, 5.5664*10^-7, 5.54982*10^-7, 5.48968*10^-7, 5.48426*10^-7, 5.46805*10^-7}, {5.42517*10^-7, 5.40923*10^-7, 5.37754*10^-7, 5.37228*10^-7, 5.35657*10^-7, 5.32534*10^-7, 5.28413*10^-7, 5.27901*10^-7, 5.2688*10^-7, 5.25354*10^-7, 5.21817*10^-7, 5.20814*10^-7, 5.20313*10^-7, 5.15838*10^-7, 5.09961*10^-7, 5.07542*10^-7, 5.06099*10^-7, 5.05619*10^-7, 5.03231*10^-7, 5.02755*10^-7}, {5.00387*10^-7, 4.99915*10^-7, 4.97567*10^-7, 4.96166*10^-7, 4.95701*10^-7, 4.93382*10^-7, 4.9292*10^-7, 4.90621*10^-7, 4.8925*10^-7, 4.87429*10^-7, 4.80694*10^-7, 4.7848*10^-7, 4.78039*10^-7, 4.75843*10^-7, 4.74097*10^-7, 4.72794*10^-7, 4.70634*10^-7, 4.66784*10^-7, 4.65511*10^-7, 4.6298*10^-7}, {4.6047*10^-7, 4.60054*10^-7, 4.56332*10^-7, 4.55101*10^-7, 4.54284*10^-7, 4.53062*10^-7, 4.51844*10^-7, 4.48221*10^-7, 4.47822*10^-7, 4.4583*10^-7, 4.43065*10^-7, 4.41888*10^-7, 4.41105*10^-7, 4.40715*10^-7, 4.39936*10^-7, 4.35304*10^-7, 4.34921*10^-7, 4.32636*10^-7, 4.315*10^-7, 4.28492*10^-7}, {4.27*10^-7, 4.25886*10^-7, 4.24777*10^-7, 4.21474*10^-7, 4.1857*10^-7, 4.18209*10^-7, 4.17489*10^-7, 4.16412*10^-7, 4.16054*10^-7, 4.14983*10^-7, 4.13915*10^-7, 4.12146*10^-7, 4.1109*10^-7, 4.08989*10^-7, 4.06905*10^-7, 4.03808*10^-7, 4.03466*10^-7, 4.02443*10^-7, 4.01763*10^-7, 3.98724*10^-7}, {3.97385*10^-7, 3.93407*10^-7, 3.9275*10^-7, 3.92422*10^-7, 3.91767*10^-7, 3.90788*10^-7, 3.90462*10^-7, 3.88518*10^-7, 3.87873*10^-7, 3.85628*10^-7, 3.80883*10^-7, 3.7932*10^-7, 3.78388*10^-7, 3.76532*10^-7, 3.74385*10^-7, 3.73471*10^-7, 3.71954*10^-7, 3.70146*10^-7, 3.69845*10^-7, 3.69246*10^-7}, {3.68351*10^-7, 3.67161*10^-7, 3.66273*10^-7, 3.64799*10^-7, 3.64506*10^-7, 3.6392*10^-7, 3.61879*10^-7, 3.6101*10^-7, 3.60144*10^-7, 3.59568*10^-7, 3.58707*10^-7, 3.58421*10^-7, 3.56995*10^-7, 3.56711*10^-7, 3.54449*10^-7, 3.52767*10^-7, 3.51652*10^-7, 3.49163*10^-7, 3.48613*10^-7, 3.47792*10^-7}, {3.46156*10^-7, 3.45885*10^-7, 3.45073*10^-7, 3.44263*10^-7, 3.43457*10^-7, 3.3973*10^-7, 3.3894*10^-7, 3.37105*10^-7, 3.36584*10^-7, 3.35545*10^-7, 3.34253*10^-7, 3.33225*10^-7, 3.31691*10^-7, 3.29411*10^-7, 3.28907*10^-7, 3.28656*10^-7, 3.28154*10^-7, 3.25167*10^-7, 3.23688*10^-7, 3.22953*10^-7}, {3.22708*10^-7, 3.20762*10^-7, 3.20036*10^-7, 3.19313*10^-7, 3.17636*10^-7, 3.16446*10^-7, 3.14791*10^-7, 3.1432*10^-7, 3.10825*10^-7, 3.10133*10^-7, 3.09444*10^-7, 3.08756*10^-7, 3.07843*10^-7, 3.07161*10^-7, 3.06708*10^-7, 3.06481*10^-7, 3.05129*10^-7, 3.04456*10^-7, 3.04008*10^-7, 3.03785*10^-7}, {3.03116*10^-7, 3.00683*10^-7, 3.00025*10^-7, 2.99806*10^-7, 2.99368*10^-7, 2.97412*10^-7, 2.97196*10^-7, 2.96765*10^-7, 2.95476*10^-7, 2.95262*10^-7, 2.94621*10^-7, 2.94195*10^-7, 2.91448*10^-7, 2.9082*10^-7, 2.90194*10^-7, 2.89777*10^-7, 2.88947*10^-7, 2.87914*10^-7, 2.84647*10^-7, 2.83034*10^-7}, {2.82833*10^-7, 2.82232*10^-7, 2.81833*10^-7, 2.81634*10^-7, 2.81236*10^-7, 2.81037*10^-7, 2.80046*10^-7, 2.78668*10^-7, 2.78081*10^-7, 2.7769*10^-7, 2.76911*10^-7, 2.75942*10^-7, 2.75363*10^-7, 2.73447*10^-7, 2.73066*10^-7, 2.72876*10^-7, 2.72306*10^-7, 2.69487*10^-7, 2.69114*10^-7, 2.68371*10^-7}, {2.67446*10^-7, 2.66894*10^-7, 2.66343*10^-7, 2.65612*10^-7, 2.65065*10^-7, 2.63977*10^-7, 2.63615*10^-7, 2.63075*10^-7, 2.62895*10^-7, 2.62357*10^-7, 2.61999*10^-7, 2.61463*10^-7, 2.61285*10^-7, 2.60397*10^-7, 2.6022*10^-7, 2.5881*10^-7, 2.58284*10^-7, 2.56542*10^-7, 2.56196*10^-7, 2.55162*10^-7}, {2.53963*10^-7, 2.51591*10^-7, 2.51087*10^-7, 2.49418*10^-7, 2.49086*10^-7, 2.47601*10^-7, 2.46945*10^-7, 2.46455*10^-7, 2.46129*10^-7, 2.45641*10^-7, 2.44509*10^-7, 2.44026*10^-7, 2.43544*10^-7, 2.42745*10^-7, 2.42586*10^-7, 2.41791*10^-7, 2.40843*10^-7, 2.40214*10^-7, 2.39431*10^-7, 2.39275*10^-7}, {2.38496*10^-7, 2.37876*10^-7, 2.36951*10^-7, 2.36184*10^-7, 2.34358*10^-7, 2.34207*10^-7, 2.33905*10^-7, 2.33303*10^-7, 2.32852*10^-7, 2.32553*10^-7, 2.31956*10^-7, 2.30621*10^-7, 2.29885*10^-7, 2.29445*10^-7, 2.29006*10^-7, 2.28859*10^-7, 2.28422*10^-7, 2.27696*10^-7, 2.26829*10^-7, 2.26685*10^-7}, {2.25968*10^-7, 2.25539*10^-7, 2.25111*10^-7, 2.24684*10^-7, 2.24117*10^-7, 2.23693*10^-7, 2.2299*10^-7, 2.22569*10^-7, 2.22429*10^-7, 2.2201*10^-7, 2.21592*10^-7, 2.21176*10^-7, 2.20484*10^-7, 2.19933*10^-7, 2.18292*10^-7, 2.17884*10^-7, 2.164*10^-7, 2.16266*10^-7, 2.15064*10^-7, 2.14799*10^-7}, {2.14269*10^-7, 2.13609*10^-7, 2.11648*10^-7, 2.1113*10^-7, 2.0997*10^-7, 2.09714*10^-7, 2.09586*10^-7, 2.08948*10^-7, 2.08566*10^-7, 2.08439*10^-7, 2.08059*10^-7, 2.07806*10^-7, 2.06674*10^-7, 2.06174*10^-7, 2.05427*10^-7, 2.04314*10^-7, 2.03333*10^-7, 2.02967*10^-7, 2.02845*10^-7, 2.02116*10^-7}, {2.01753*10^-7, 2.0115*10^-7, 2.0103*10^-7, 2.0043*10^-7, 2.00311*10^-7, 1.99953*10^-7, 1.99358*10^-7, 1.9853*10^-7, 1.98294*10^-7, 1.96889*10^-7, 1.96772*10^-7, 1.95844*10^-7, 1.95729*10^-7, 1.95153*10^-7, 1.95038*10^-7, 1.94465*10^-7, 1.93327*10^-7, 1.931*10^-7, 1.92987*10^-7, 1.92761*10^-7}, {1.92311*10^-7, 1.91414*10^-7, 1.9108*10^-7, 1.90746*10^-7, 1.90635*10^-7, 1.89971*10^-7, 1.89091*10^-7, 1.88653*10^-7, 1.88435*10^-7, 1.88108*10^-7, 1.86487*10^-7, 1.86379*10^-7, 1.85844*10^-7, 1.85737*10^-7, 1.85418*10^-7, 1.85205*10^-7, 1.84886*10^-7, 1.84569*10^-7, 1.84147*10^-7, 1.83831*10^-7}, {1.83621*10^-7, 1.82993*10^-7, 1.8268*10^-7, 1.82265*10^-7, 1.81644*10^-7, 1.81438*10^-7, 1.80718*10^-7, 1.80105*10^-7, 1.79597*10^-7, 1.78385*10^-7, 1.78084*10^-7, 1.77485*10^-7, 1.77186*10^-7, 1.77086*10^-7, 1.75998*10^-7, 1.75605*10^-7, 1.74726*10^-7, 1.7424*10^-7, 1.73949*10^-7, 1.73274*10^-7}, {1.73082*10^-7, 1.72986*10^-7, 1.72698*10^-7, 1.72221*10^-7, 1.7184*10^-7, 1.71556*10^-7, 1.71367*10^-7, 1.71083*10^-7, 1.69677*10^-7, 1.69026*10^-7, 1.68564*10^-7, 1.68472*10^-7, 1.6792*10^-7, 1.67462*10^-7, 1.67371*10^-7, 1.66643*10^-7, 1.66552*10^-7, 1.65739*10^-7, 1.64665*10^-7, 1.63866*10^-7}, {1.63601*10^-7, 1.62897*10^-7, 1.62111*10^-7, 1.61851*10^-7, 1.61764*10^-7, 1.60986*10^-7, 1.60814*10^-7, 1.60556*10^-7, 1.6047*10^-7, 1.60043*10^-7, 1.59702*10^-7, 1.59277*10^-7, 1.59023*10^-7, 1.5877*10^-7, 1.58433*10^-7, 1.58265*10^-7, 1.58013*10^-7, 1.5793*10^-7, 1.57512*10^-7, 1.57429*10^-7}, {1.5693*10^-7, 1.56765*10^-7, 1.56517*10^-7, 1.56269*10^-7, 1.56187*10^-7, 1.55694*10^-7, 1.55531*10^-7, 1.5496*10^-7, 1.5423*10^-7, 1.54069*10^-7, 1.53827*10^-7, 1.53026*10^-7, 1.52866*10^-7, 1.52548*10^-7, 1.5231*10^-7, 1.52152*10^-7, 1.51836*10^-7, 1.51678*10^-7, 1.51128*10^-7, 1.50893*10^-7}, {1.50737*10^-7, 1.50193*10^-7, 1.49728*10^-7, 1.49574*10^-7, 1.49496*10^-7, 1.48347*10^-7, 1.48195*10^-7, 1.47286*10^-7, 1.4706*10^-7, 1.46835*10^-7, 1.46386*10^-7, 1.45939*10^-7, 1.4542*10^-7, 1.45198*10^-7, 1.45051*10^-7, 1.44977*10^-7, 1.4483*10^-7, 1.44171*10^-7, 1.43952*10^-7, 1.43516*10^-7}} N[(8^4/((8*Data)^2 + 8) )] {{4096./(8. + 64. ("2")^2), 7.0137, 2.54726, 1.3028, 0.52838, 0.378418, 0.221358, 0.177224, 0.120954, 0.0760886, 0.0665886, 0.0467452, 0.0380697, 0.034611, 0.0289707, 0.0227829, 0.0183849, 0.0171991, 0.0142567, 0.0126956}, {0.0120095, 0.0102546, 0.00929, 0.00807966, 0.00680191, 0.00627382, 0.00603254, 0.00558995, 0.0053867, 0.00501209, 0.00396798, 0.00372936, 0.00340986, 0.00331244, 0.00288274, 0.00280688, 0.00259644, 0.00240881, 0.0022948, 0.00213839}, {0.00199743, 0.00195353, 0.00175433, 0.00171816, 0.0016491, 0.00161612, 0.00143752, 0.00128697, 0.00124202, 0.00122042, 0.00117887, 0.00112043, 0.00110191, 0.00101585, 0.000968976, 0.000925268, 0.000884453, 0.000871446, 0.000834103, 0.000810525}, {0.00079911, 0.000745494, 0.000679051, 0.000661696, 0.000653267, 0.000636885, 0.000584149, 0.000563533, 0.000531521, 0.000525447, 0.000513606, 0.000496582, 0.000475168, 0.000460004, 0.000445555, 0.000436297, 0.000422942, 0.000406068, 0.000398007, 0.000382589}, {0.000364545, 0.00036109, 0.000344528, 0.000341353, 0.000332086, 0.000326116, 0.000317459, 0.000306441, 0.000301147, 0.00029855, 0.000293458, 0.000278939, 0.00026985, 0.000265471, 0.000257027, 0.000252955, 0.000247027, 0.000235779, 0.000233979, 0.000218668}, {0.000213897, 0.000206286, 0.000201912, 0.000197677, 0.000196294, 0.000192233, 0.000185739, 0.000182, 0.000178372, 0.000177187, 0.000173701, 0.000170317, 0.000168116, 0.000167032, 0.000160739, 0.000155763, 0.000154795, 0.000152887, 0.000150091, 0.00014737}, {0.00014648, 0.000141302, 0.000139638, 0.000137195, 0.000134037, 0.00013024, 0.000127317, 0.0001238, 0.000121091, 0.000119116, 0.00011719, 0.000115932, 0.000113475, 0.000111683, 0.000110512, 0.000108225, 0.000107108, 0.000103331, 0.000100754, 0.0000977874}, {0.0000973057, 0.0000949497, 0.0000944888, 0.0000935769, 0.000093126, 0.0000909193, 0.0000879593, 0.0000871401, 0.0000867348, 0.0000859327, 0.000083211, 0.0000824571, 0.000082084, 0.0000813453, 0.0000777974, 0.0000771158, 0.000075779, 0.0000741564, 0.0000728955, 0.0000722771}, {0.0000713641, 0.0000704684, 0.0000684427, 0.0000678799, 0.0000670488, 0.0000662328, 0.0000651677, 0.0000643857, 0.0000628634, 0.0000623679, 0.0000616356, 0.0000613944, 0.0000602092, 0.0000599762, 0.0000592855, 0.0000581606, 0.0000579395, 0.0000568524, 0.0000566387, 0.0000560047}, {0.0000541653, 0.0000537688, 0.0000535722, 0.0000531822, 0.0000526052, 0.0000520375, 0.0000512948, 0.0000507482, 0.0000502102, 0.0000483091, 0.0000481417, 0.0000473174, 0.000046673, 0.000045886, 0.0000454233, 0.0000449675, 0.0000443705, 0.0000434969, 0.0000432114, 0.0000427885}, {0.0000423717, 0.0000422342, 0.0000418254, 0.0000410256, 0.0000403765, 0.0000392462, 0.0000391236, 0.00003888, 0.0000385189, 0.0000383997, 0.0000380452, 0.0000378116, 0.0000376956, 0.0000374653, 0.0000367867, 0.0000366754, 0.0000363444, 0.0000345512, 0.0000342486, 0.0000339499}, {0.0000335577, 0.0000326998, 0.0000322372, 0.000031606, 0.0000314291, 0.0000313412, 0.0000311665, 0.0000309071, 0.0000305663, 0.000030398, 0.0000303144, 0.0000300656, 0.000029577, 0.000029179, 0.0000291003, 0.000028944, 0.0000288663, 0.0000287118, 0.0000284824, 0.0000280318}, {0.0000275918, 0.0000273042, 0.0000268812, 0.0000266733, 0.0000265361, 0.0000263322, 0.0000260641, 0.0000259315, 0.0000256694, 0.0000255398, 0.000025094, 0.0000249688, 0.0000247827, 0.0000247211, 0.0000245986, 0.0000244167, 0.0000243564, 0.0000241771, 0.0000238827, 0.0000233096}, {0.0000231417, 0.0000230308, 0.0000229756, 0.0000223288, 0.0000222237, 0.0000221714, 0.0000219127, 0.0000216082, 0.000021558, 0.00002131, 0.0000211146, 0.0000209698, 0.0000208265, 0.0000206847, 0.0000202677, 0.0000201316, 0.0000200415, 0.0000199967, 0.0000197312, 0.0000195139}, {0.0000192578, 0.0000190899, 0.0000187606, 0.0000184794, 0.0000183608, 0.0000182824, 0.0000182433, 0.0000181657, 0.000018127, 0.0000179356, 0.0000177099, 0.0000175986, 0.0000174884, 0.0000171639, 0.0000171284, 0.0000168483, 0.0000168138, 0.0000164409, 0.0000163414, 0.00001621}, {0.0000161126, 0.0000160481, 0.000016016, 0.0000159521, 0.0000158254, 0.0000157314, 0.0000155766, 0.0000155459, 0.0000153938, 0.0000151846, 0.0000150377, 0.0000149506, 0.0000147787, 0.0000147503, 0.0000146938, 0.0000146657, 0.0000145263, 0.0000143616, 0.0000143344, 0.0000141198}, {0.0000140933, 0.0000140143, 0.000013962, 0.0000139359, 0.0000138068, 0.0000137047, 0.0000134792, 0.0000131872, 0.0000131394, 0.0000130682, 0.0000129743, 0.0000127893, 0.0000127665, 0.000012721, 0.0000126307, 0.0000124531, 0.0000124311, 0.0000123874, 0.0000123007, 0.0000122362}, {0.0000121723, 0.0000121299, 0.0000120042, 0.0000119834, 0.0000117585, 0.0000116982, 0.0000116782, 0.0000116186, 0.0000115791, 0.0000115202, 0.0000113846, 0.0000113272, 0.0000112891, 0.0000112702, 0.0000112137, 0.0000111762, 0.0000111204, 0.00001101, 0.0000109554, 0.0000109012}, {0.0000107763, 0.000010741, 0.0000106884, 0.0000105843, 0.0000105158, 0.0000104648, 0.000010431, 0.0000102155, 0.0000100701, 9.99069*10^-6, 9.92784*10^-6, 9.89663*10^-6, 9.85009*10^-6, 9.83465*10^-6, 9.78855*10^-6, 9.62226*10^-6, 9.53334*10^-6, 9.51864*10^-6, 9.40225*10^-6, 9.34485*10^-6}, {9.31635*10^-6, 9.23163*10^-6, 9.13423*10^-6, 9.06561*10^-6, 9.05197*10^-6, 9.0248*10^-6, 8.97082*10^-6, 8.93065*10^-6, 8.89075*10^-6, 8.8643*10^-6, 8.85112*10^-6, 8.82485*10^-6, 8.78566*10^-6, 8.7338*10^-6, 8.70805*10^-6, 8.69522*10^-6, 8.65688*10^-6, 8.59356*10^-6, 8.58097*10^-6, 8.51848*10^-6}, {8.46897*10^-6, 8.44438*10^-6, 8.35914*10^-6, 8.29905*10^-6, 8.22779*10^-6, 8.216*10^-6, 8.18079*10^-6, 8.15744*10^-6, 8.1458*10^-6, 8.0536*10^-6, 7.97419*10^-6, 7.95172*10^-6, 7.9182*10^-6, 7.87382*10^-6, 7.84078*10^-6, 7.81887*10^-6, 7.72141*10^-6, 7.67868*10^-6, 7.62576*10^-6, 7.59427*10^-6}, {7.56297*10^-6, 7.52155*10^-6, 7.47024*10^-6, 7.40936*10^-6, 7.33927*10^-6, 7.31943*10^-6, 7.28982*10^-6, 7.26038*10^-6, 7.25061*10^-6, 7.11585*10^-6, 7.10637*10^-6, 7.05925*10^-6, 7.02189*10^-6, 7.00332*10^-6, 6.9389*10^-6, 6.92065*10^-6, 6.88438*10^-6, 6.83051*10^-6, 6.80381*10^-6, 6.75088*10^-6}, {6.73338*10^-6, 6.70724*10^-6, 6.62123*10^-6, 6.57884*10^-6, 6.57041*10^-6, 6.50356*10^-6, 6.39708*10^-6, 6.38093*10^-6, 6.37288*10^-6, 6.32488*10^-6, 6.30109*10^-6, 6.28531*10^-6, 6.2383*10^-6, 6.21499*10^-6, 6.18412*10^-6, 6.16877*10^-6, 6.13824*10^-6, 6.05544*10^-6, 6.048*10^-6, 6.03315*10^-6}, {6.02575*10^-6, 5.98162*10^-6, 5.88051*10^-6, 5.87339*10^-6, 5.8521*10^-6, 5.83092*10^-6, 5.80986*10^-6, 5.79588*10^-6, 5.77501*10^-6, 5.76807*10^-6, 5.72674*10^-6, 5.71306*10^-6, 5.67231*10^-6, 5.66556*10^-6, 5.632*10^-6, 5.62532*10^-6, 5.57233*10^-6, 5.56576*10^-6, 5.51361*10^-6, 5.49424*10^-6}, {5.43041*10^-6, 5.38014*10^-6, 5.35527*10^-6, 5.3429*10^-6, 5.33673*10^-6, 5.32442*10^-6, 5.31828*10^-6, 5.25146*10^-6, 5.22748*10^-6, 5.1918*10^-6, 5.1741*10^-6, 5.14481*10^-6, 5.13898*10^-6, 5.12735*10^-6, 5.10998*10^-6, 5.10421*10^-6, 5.08695*10^-6, 5.05839*10^-6, 5.05271*10^-6, 5.0188*10^-6}, {4.99081*10^-6, 4.98524*10^-6, 4.95753*10^-6, 4.91912*10^-6, 4.9028*10^-6, 4.89196*10^-6, 4.87577*10^-6, 4.85431*10^-6, 4.83831*10^-6, 4.82238*10^-6, 4.7803*10^-6, 4.7491*10^-6, 4.74393*10^-6, 4.73361*10^-6, 4.69777*10^-6, 4.68254*10^-6, 4.67242*10^-6, 4.65228*10^-6, 4.6273*10^-6, 4.60746*10^-6}, {4.59266*10^-6, 4.57793*10^-6, 4.52453*10^-6, 4.51013*10^-6, 4.50534*10^-6, 4.48153*10^-6, 4.44851*10^-6, 4.43914*10^-6, 4.42514*10^-6, 4.38355*10^-6, 4.37896*10^-6, 4.35615*10^-6, 4.3245*10^-6, 4.31552*10^-6, 4.31104*10^-6, 4.28875*10^-6, 4.25783*10^-6, 4.24906*10^-6, 4.23159*10^-6, 4.19269*10^-6}, {4.18412*10^-6, 4.17131*10^-6, 4.16706*10^-6, 4.15856*10^-6, 4.14587*10^-6, 4.14165*10^-6, 4.11648*10^-6, 4.10814*10^-6, 4.06683*10^-6, 4.02209*10^-6, 3.998*10^-6, 3.99401*10^-6, 3.98604*10^-6, 3.97413*10^-6, 3.96227*10^-6, 3.95833*10^-6, 3.94654*10^-6, 3.90377*10^-6, 3.89992*10^-6, 3.88839*10^-6}, {3.8579*10^-6, 3.84656*10^-6, 3.82403*10^-6, 3.82029*10^-6, 3.80912*10^-6, 3.78691*10^-6, 3.7576*10^-6, 3.75396*10^-6, 3.7467*10^-6, 3.73585*10^-6, 3.7107*10^-6, 3.70356*10^-6, 3.7*10^-6, 3.66818*10^-6, 3.62639*10^-6, 3.60919*10^-6, 3.59892*10^-6, 3.59551*10^-6, 3.57853*10^-6, 3.57515*10^-6}, {3.55831*10^-6, 3.55495*10^-6, 3.53826*10^-6, 3.52829*10^-6, 3.52498*10^-6, 3.50849*10^-6, 3.50521*10^-6, 3.48886*10^-6, 3.47911*10^-6, 3.46617*10^-6, 3.41827*10^-6, 3.40252*10^-6, 3.39939*10^-6, 3.38377*10^-6, 3.37136*10^-6, 3.36209*10^-6, 3.34673*10^-6, 3.31935*10^-6, 3.3103*10^-6, 3.2923*10^-6}, {3.27445*10^-6, 3.27149*10^-6, 3.24503*10^-6, 3.23628*10^-6, 3.23046*10^-6, 3.22177*10^-6, 3.21311*10^-6, 3.18735*10^-6, 3.18451*10^-6, 3.17035*10^-6, 3.15068*10^-6, 3.14231*10^-6, 3.13675*10^-6, 3.13397*10^-6, 3.12843*10^-6, 3.09549*10^-6, 3.09277*10^-6, 3.07652*10^-6, 3.06844*10^-6, 3.04705*10^-6}, {3.03644*10^-6, 3.02852*10^-6, 3.02063*10^-6, 2.99715*10^-6, 2.9765*10^-6, 2.97393*10^-6, 2.96881*10^-6, 2.96115*10^-6, 2.95861*10^-6, 2.95099*10^-6, 2.9434*10^-6, 2.93082*10^-6, 2.9233*10^-6, 2.90837*10^-6, 2.89354*10^-6, 2.87152*10^-6, 2.86909*10^-6, 2.86181*10^-6, 2.85698*10^-6, 2.83537*10^-6}, {2.82585*10^-6, 2.79756*10^-6, 2.79289*10^-6, 2.79055*10^-6, 2.7859*10^-6, 2.77894*10^-6, 2.77662*10^-6, 2.76279*10^-6, 2.75821*10^-6, 2.74224*10^-6, 2.7085*10^-6, 2.69739*10^-6, 2.69076*10^-6, 2.67756*10^-6, 2.6623*10^-6, 2.65579*10^-6, 2.645*10^-6, 2.63215*10^-6, 2.63001*10^-6, 2.62575*10^-6}, {2.61938*10^-6, 2.61092*10^-6, 2.60461*10^-6, 2.59413*10^-6, 2.59204*10^-6, 2.58787*10^-6, 2.57336*10^-6, 2.56718*10^-6, 2.56102*10^-6, 2.55693*10^-6, 2.55081*10^-6, 2.54877*10^-6, 2.53863*10^-6, 2.53661*10^-6, 2.52053*10^-6, 2.50856*10^-6, 2.50064*10^-6, 2.48294*10^-6, 2.47903*10^-6, 2.47318*10^-6}, {2.46156*10^-6, 2.45963*10^-6, 2.45385*10^-6, 2.4481*10^-6, 2.44236*10^-6, 2.41586*10^-6, 2.41024*10^-6, 2.39719*10^-6, 2.39349*10^-6, 2.3861*10^-6, 2.37691*10^-6, 2.3696*10^-6, 2.35869*10^-6, 2.34248*10^-6, 2.33889*10^-6, 2.33711*10^-6, 2.33354*10^-6, 2.3123*10^-6, 2.30178*10^-6, 2.29655*10^-6}, {2.29481*10^-6, 2.28097*10^-6, 2.27581*10^-6, 2.27067*10^-6, 2.25874*10^-6, 2.25028*10^-6, 2.23851*10^-6, 2.23517*10^-6, 2.21031*10^-6, 2.20539*10^-6, 2.20049*10^-6, 2.1956*10^-6, 2.18911*10^-6, 2.18426*10^-6, 2.18103*10^-6, 2.17942*10^-6, 2.1698*10^-6, 2.16502*10^-6, 2.16183*10^-6, 2.16025*10^-6}, {2.15549*10^-6, 2.13819*10^-6, 2.13351*10^-6, 2.13195*10^-6, 2.12884*10^-6, 2.11493*10^-6, 2.1134*10^-6, 2.11033*10^-6, 2.10116*10^-6, 2.09964*10^-6, 2.09508*10^-6, 2.09205*10^-6, 2.07252*10^-6, 2.06805*10^-6, 2.0636*10^-6, 2.06064*10^-6, 2.05474*10^-6, 2.04739*10^-6, 2.02416*10^-6, 2.01268*10^-6}, {2.01126*10^-6, 2.00699*10^-6, 2.00415*10^-6, 2.00273*10^-6, 1.9999*10^-6, 1.99848*10^-6, 1.99144*10^-6, 1.98164*10^-6, 1.97746*10^-6, 1.97468*10^-6, 1.96915*10^-6, 1.96226*10^-6, 1.95814*10^-6, 1.94451*10^-6, 1.9418*10^-6, 1.94045*10^-6, 1.9364*10^-6, 1.91635*10^-6, 1.9137*10^-6, 1.90842*10^-6}, {1.90184*10^-6, 1.89791*10^-6, 1.894*10^-6, 1.88879*10^-6, 1.88491*10^-6, 1.87717*10^-6, 1.8746*10^-6, 1.87075*10^-6, 1.86948*10^-6, 1.86565*10^-6, 1.8631*10^-6, 1.85929*10^-6, 1.85803*10^-6, 1.85171*10^-6, 1.85045*10^-6, 1.84042*10^-6, 1.83668*10^-6, 1.8243*10^-6, 1.82184*10^-6, 1.81448*10^-6}, {1.80596*10^-6, 1.78909*10^-6, 1.78551*10^-6, 1.77364*10^-6, 1.77128*10^-6, 1.76072*10^-6, 1.75605*10^-6, 1.75257*10^-6, 1.75025*10^-6, 1.74678*10^-6, 1.73873*10^-6, 1.7353*10^-6, 1.73187*10^-6, 1.72619*10^-6, 1.72505*10^-6, 1.7194*10^-6, 1.71266*10^-6, 1.70819*10^-6, 1.70262*10^-6, 1.70151*10^-6}, {1.69597*10^-6, 1.69156*10^-6, 1.68498*10^-6, 1.67953*10^-6, 1.66654*10^-6, 1.66547*10^-6, 1.66332*10^-6, 1.65904*10^-6, 1.65584*10^-6, 1.65371*10^-6, 1.64947*10^-6, 1.63997*10^-6, 1.63474*10^-6, 1.63161*10^-6, 1.62848*10^-6, 1.62745*10^-6, 1.62434*10^-6, 1.61917*10^-6, 1.61301*10^-6, 1.61199*10^-6}, {1.60688*10^-6, 1.60383*10^-6, 1.60079*10^-6, 1.59775*10^-6, 1.59372*10^-6, 1.59071*10^-6, 1.5857*10^-6, 1.58271*10^-6, 1.58172*10^-6, 1.57874*10^-6, 1.57577*10^-6, 1.5728*10^-6, 1.56788*10^-6, 1.56397*10^-6, 1.5523*10^-6, 1.5494*10^-6, 1.53885*10^-6, 1.53789*10^-6, 1.52935*10^-6, 1.52746*10^-6}, {1.52369*10^-6, 1.519*10^-6, 1.50505*10^-6, 1.50137*10^-6, 1.49312*10^-6, 1.4913*10^-6, 1.49039*10^-6, 1.48585*10^-6, 1.48314*10^-6, 1.48223*10^-6, 1.47953*10^-6, 1.47773*10^-6, 1.46968*10^-6, 1.46613*10^-6, 1.46081*10^-6, 1.4529*10^-6, 1.44592*10^-6, 1.44332*10^-6, 1.44245*10^-6, 1.43727*10^-6}, {1.43469*10^-6, 1.4304*10^-6, 1.42955*10^-6, 1.42528*10^-6, 1.42443*10^-6, 1.42188*10^-6, 1.41766*10^-6, 1.41177*10^-6, 1.41009*10^-6, 1.4001*10^-6, 1.39927*10^-6, 1.39267*10^-6, 1.39185*10^-6, 1.38775*10^-6, 1.38694*10^-6, 1.38286*10^-6, 1.37477*10^-6, 1.37316*10^-6, 1.37235*10^-6, 1.37075*10^-6}, {1.36754*10^-6, 1.36117*10^-6, 1.35879*10^-6, 1.35642*10^-6, 1.35563*10^-6, 1.3509*10^-6, 1.34465*10^-6, 1.34153*10^-6, 1.33998*10^-6, 1.33766*10^-6, 1.32613*10^-6, 1.32536*10^-6, 1.32156*10^-6, 1.3208*10^-6, 1.31852*10^-6, 1.31701*10^-6, 1.31475*10^-6, 1.31249*10^-6, 1.30949*10^-6, 1.30724*10^-6}, {1.30575*10^-6, 1.30128*10^-6, 1.29906*10^-6, 1.2961*10^-6, 1.29169*10^-6, 1.29022*10^-6, 1.28511*10^-6, 1.28075*10^-6, 1.27713*10^-6, 1.26852*10^-6, 1.26638*10^-6, 1.26211*10^-6, 1.25999*10^-6, 1.25928*10^-6, 1.25154*10^-6, 1.24875*10^-6, 1.24249*10^-6, 1.23904*10^-6, 1.23697*10^-6, 1.23217*10^-6}, {1.2308*10^-6, 1.23012*10^-6, 1.22808*10^-6, 1.22468*10^-6, 1.22198*10^-6, 1.21995*10^-6, 1.21861*10^-6, 1.21659*10^-6, 1.20659*10^-6, 1.20196*10^-6, 1.19868*10^-6, 1.19802*10^-6, 1.1941*10^-6, 1.19084*10^-6, 1.19019*10^-6, 1.18501*10^-6, 1.18437*10^-6, 1.17859*10^-6, 1.17095*10^-6, 1.16527*10^-6}, {1.16338*10^-6, 1.15838*10^-6, 1.15279*10^-6, 1.15094*10^-6, 1.15032*10^-6, 1.14479*10^-6, 1.14356*10^-6, 1.14173*10^-6, 1.14112*10^-6, 1.13808*10^-6, 1.13566*10^-6, 1.13264*10^-6, 1.13083*10^-6, 1.12903*10^-6, 1.12663*10^-6, 1.12544*10^-6, 1.12365*10^-6, 1.12306*10^-6, 1.12009*10^-6, 1.11949*10^-6}, {1.11595*10^-6, 1.11477*10^-6, 1.11301*10^-6, 1.11125*10^-6, 1.11066*10^-6, 1.10716*10^-6, 1.10599*10^-6, 1.10194*10^-6, 1.09675*10^-6, 1.0956*10^-6, 1.09388*10^-6, 1.08818*10^-6, 1.08705*10^-6, 1.08479*10^-6, 1.08309*10^-6, 1.08197*10^-6, 1.07972*10^-6, 1.0786*10^-6, 1.07469*10^-6, 1.07302*10^-6}, {1.07191*10^-6, 1.06804*10^-6, 1.06473*10^-6, 1.06363*10^-6, 1.06309*10^-6, 1.05491*10^-6, 1.05383*10^-6, 1.04737*10^-6, 1.04576*10^-6, 1.04416*10^-6, 1.04097*10^-6, 1.03779*10^-6, 1.0341*10^-6, 1.03252*10^-6, 1.03147*10^-6, 1.03095*10^-6, 1.0299*10^-6, 1.02522*10^-6, 1.02366*10^-6, 1.02056*10^-6}} N[(9^4/((9*Data)^2 + 9) )] {{6561./(9. + 81. ("2")^2), 8.89024, 3.22566, 1.64932, 0.668807, 0.478975, 0.280169, 0.224308, 0.153087, 0.0963012, 0.0842775, 0.0591625, 0.0481824, 0.0438048, 0.0366663, 0.0288347, 0.0232684, 0.0217677, 0.0180437, 0.0160679}, {0.0151995, 0.0129785, 0.0117577, 0.0102258, 0.00860868, 0.00794031, 0.00763495, 0.00707479, 0.00681754, 0.00634343, 0.00502198, 0.00471997, 0.0043156, 0.00419231, 0.00364847, 0.00355246, 0.00328612, 0.00304865, 0.00290436, 0.0027064}, {0.002528, 0.00247244, 0.00222033, 0.00217455, 0.00208714, 0.0020454, 0.00181936, 0.00162882, 0.00157193, 0.00154459, 0.00149201, 0.00141804, 0.0013946, 0.00128569, 0.00122636, 0.00117104, 0.00111939, 0.00110292, 0.00105566, 0.00102582}, {0.00101137, 0.000943516, 0.000859425, 0.000837459, 0.000826791, 0.000806057, 0.000739313, 0.000713222, 0.000672707, 0.000665019, 0.000650033, 0.000628486, 0.000601385, 0.000582193, 0.000563905, 0.000552188, 0.000535286, 0.00051393, 0.000503728, 0.000484215}, {0.000461378, 0.000457005, 0.000436044, 0.000432025, 0.000420296, 0.000412741, 0.000401783, 0.00038784, 0.000381139, 0.000377853, 0.000371408, 0.000353032, 0.000341528, 0.000335987, 0.0003253, 0.000320147, 0.000312643, 0.000298407, 0.000296129, 0.000276752}, {0.000270714, 0.000261081, 0.000255545, 0.000250184, 0.000248435, 0.000243295, 0.000235076, 0.000230343, 0.000225752, 0.000224252, 0.00021984, 0.000215558, 0.000212772, 0.000211399, 0.000203435, 0.000197137, 0.000195913, 0.000193498, 0.000189958, 0.000186515}, {0.000185388, 0.000178836, 0.000176729, 0.000173637, 0.00016964, 0.000164835, 0.000161136, 0.000156685, 0.000153256, 0.000150757, 0.000148319, 0.000146726, 0.000143617, 0.000141349, 0.000139867, 0.000136972, 0.000135558, 0.000130778, 0.000127517, 0.000123762}, {0.000123153, 0.000120171, 0.000119587, 0.000118433, 0.000117863, 0.00011507, 0.000111324, 0.000110287, 0.000109774, 0.000108759, 0.000105314, 0.00010436, 0.000103888, 0.000102953, 0.0000984624, 0.0000975996, 0.0000959078, 0.0000938542, 0.0000922584, 0.0000914757}, {0.0000903202, 0.0000891865, 0.0000866228, 0.0000859106, 0.0000848586, 0.0000838258, 0.0000824779, 0.0000814882, 0.0000795614, 0.0000789344, 0.0000780075, 0.0000777022, 0.0000762022, 0.0000759074, 0.0000750333, 0.0000736095, 0.0000733296, 0.0000719539, 0.0000716834, 0.000070881}, {0.0000685529, 0.0000680512, 0.0000678023, 0.0000673088, 0.0000665785, 0.00006586, 0.00006492, 0.0000642282, 0.0000635473, 0.0000611413, 0.0000609293, 0.000059886, 0.0000590706, 0.0000580745, 0.0000574888, 0.000056912, 0.0000561564, 0.0000550508, 0.0000546895, 0.0000541542}, {0.0000536267, 0.0000534526, 0.0000529353, 0.000051923, 0.0000511015, 0.000049671, 0.0000495158, 0.0000492075, 0.0000487505, 0.0000485996, 0.000048151, 0.0000478553, 0.0000477085, 0.000047417, 0.0000465581, 0.0000464172, 0.0000459984, 0.0000437289, 0.0000433459, 0.0000429679}, {0.0000424715, 0.0000413856, 0.0000408003, 0.0000400014, 0.0000397775, 0.0000396662, 0.0000394451, 0.0000391168, 0.0000386855, 0.0000384725, 0.0000383666, 0.0000380517, 0.0000374334, 0.0000369296, 0.0000368301, 0.0000366322, 0.0000365339, 0.0000363384, 0.000036048, 0.0000354778}, {0.0000349209, 0.0000345569, 0.0000340215, 0.0000337584, 0.0000335847, 0.0000333267, 0.0000329873, 0.0000328196, 0.0000324878, 0.0000323239, 0.0000317596, 0.0000316011, 0.0000313656, 0.0000312876, 0.0000311327, 0.0000309023, 0.0000308261, 0.0000305992, 0.0000302265, 0.0000295012}, {0.0000292887, 0.0000291483, 0.0000290785, 0.0000282599, 0.0000281269, 0.0000280607, 0.0000277333, 0.0000273479, 0.0000272844, 0.0000269704, 0.0000267231, 0.0000265399, 0.0000263585, 0.000026179, 0.0000256513, 0.000025479, 0.0000253651, 0.0000253084, 0.0000249722, 0.0000246972}, {0.0000243732, 0.0000241606, 0.0000237439, 0.000023388, 0.0000232379, 0.0000231386, 0.0000230892, 0.0000229909, 0.000022942, 0.0000226998, 0.0000224141, 0.0000222733, 0.0000221338, 0.000021723, 0.0000216781, 0.0000213236, 0.0000212799, 0.000020808, 0.000020682, 0.0000205158}, {0.0000203925, 0.0000203109, 0.0000202703, 0.0000201894, 0.0000200291, 0.0000199101, 0.0000197141, 0.0000196753, 0.0000194828, 0.000019218, 0.0000190321, 0.0000189219, 0.0000187043, 0.0000186684, 0.0000185969, 0.0000185613, 0.0000183849, 0.0000181764, 0.000018142, 0.0000178704}, {0.0000178368, 0.0000177368, 0.0000176706, 0.0000176376, 0.0000174742, 0.000017345, 0.0000170597, 0.00001669, 0.0000166295, 0.0000165395, 0.0000164206, 0.0000161865, 0.0000161576, 0.0000161, 0.0000159858, 0.0000157609, 0.0000157332, 0.0000156778, 0.0000155681, 0.0000154865}, {0.0000154055, 0.0000153519, 0.0000151928, 0.0000151665, 0.0000148818, 0.0000148056, 0.0000147803, 0.0000147048, 0.0000146548, 0.0000145803, 0.0000144086, 0.000014336, 0.0000142878, 0.0000142639, 0.0000141923, 0.0000141449, 0.0000140742, 0.0000139345, 0.0000138654, 0.0000137968}, {0.0000136387, 0.0000135941, 0.0000135275, 0.0000133958, 0.000013309, 0.0000132445, 0.0000132018, 0.000012929, 0.000012745, 0.0000126445, 0.0000125649, 0.0000125254, 0.0000124665, 0.000012447, 0.0000123886, 0.0000121782, 0.0000120656, 0.000012047, 0.0000118997, 0.0000118271}, {0.000011791, 0.0000116838, 0.0000115605, 0.0000114737, 0.0000114564, 0.000011422, 0.0000113537, 0.0000113029, 0.0000112524, 0.0000112189, 0.0000112022, 0.0000111689, 0.0000111193, 0.0000110537, 0.0000110211, 0.0000110049, 0.0000109564, 0.0000108762, 0.0000108603, 0.0000107812}, {0.0000107185, 0.0000106874, 0.0000105795, 0.0000105035, 0.0000104133, 0.0000103984, 0.0000103538, 0.0000103243, 0.0000103095, 0.0000101928, 0.0000100923, 0.0000100639, 0.0000100215, 9.9653*10^-6, 9.92349*10^-6, 9.89576*10^-6, 9.77241*10^-6, 9.71833*10^-6, 9.65135*10^-6, 9.61149*10^-6}, {9.57189*10^-6, 9.51946*10^-6, 9.45452*10^-6, 9.37747*10^-6, 9.28877*10^-6, 9.26365*10^-6, 9.22618*10^-6, 9.18892*10^-6, 9.17656*10^-6, 9.006*10^-6, 8.994*10^-6, 8.93436*10^-6, 8.88707*10^-6, 8.86357*10^-6, 8.78204*10^-6, 8.75895*10^-6, 8.71305*10^-6, 8.64487*10^-6, 8.61108*10^-6, 8.54409*10^-6}, {8.52193*10^-6, 8.48886*10^-6, 8.37999*10^-6, 8.32634*10^-6, 8.31567*10^-6, 8.23106*10^-6, 8.0963*10^-6, 8.07586*10^-6, 8.06567*10^-6, 8.00493*10^-6, 7.97482*10^-6, 7.95484*10^-6, 7.89535*10^-6, 7.86585*10^-6, 7.82678*10^-6, 7.80735*10^-6, 7.76871*10^-6, 7.66392*10^-6, 7.6545*10^-6, 7.63571*10^-6}, {7.62634*10^-6, 7.57049*10^-6, 7.44253*10^-6, 7.43351*10^-6, 7.40656*10^-6, 7.37976*10^-6, 7.3531*10^-6, 7.33541*10^-6, 7.30899*10^-6, 7.30022*10^-6, 7.2479*10^-6, 7.23059*10^-6, 7.17902*10^-6, 7.17048*10^-6, 7.128*10^-6, 7.11955*10^-6, 7.05248*10^-6, 7.04416*10^-6, 6.97816*10^-6, 6.95364*10^-6}, {6.87286*10^-6, 6.80924*10^-6, 6.77776*10^-6, 6.7621*10^-6, 6.7543*10^-6, 6.73872*10^-6, 6.73095*10^-6, 6.64638*10^-6, 6.61602*10^-6, 6.57088*10^-6, 6.54848*10^-6, 6.5114*10^-6, 6.50402*10^-6, 6.4893*10^-6, 6.46731*10^-6, 6.46001*10^-6, 6.43817*10^-6, 6.40202*10^-6, 6.39483*10^-6, 6.35192*10^-6}, {6.3165*10^-6, 6.30945*10^-6, 6.27438*10^-6, 6.22577*10^-6, 6.2051*10^-6, 6.19139*10^-6, 6.1709*10^-6, 6.14374*10^-6, 6.12348*10^-6, 6.10333*10^-6, 6.05007*10^-6, 6.01058*10^-6, 6.00403*10^-6, 5.99098*10^-6, 5.94562*10^-6, 5.92633*10^-6, 5.91353*10^-6, 5.88805*10^-6, 5.85643*10^-6, 5.83131*10^-6}, {5.81258*10^-6, 5.79394*10^-6, 5.72636*10^-6, 5.70813*10^-6, 5.70207*10^-6, 5.67193*10^-6, 5.63014*10^-6, 5.61829*10^-6, 5.60057*10^-6, 5.54793*10^-6, 5.54213*10^-6, 5.51325*10^-6, 5.47319*10^-6, 5.46183*10^-6, 5.45616*10^-6, 5.42795*10^-6, 5.38882*10^-6, 5.37771*10^-6, 5.35561*10^-6, 5.30638*10^-6}, {5.29553*10^-6, 5.27932*10^-6, 5.27393*10^-6, 5.26318*10^-6, 5.24712*10^-6, 5.24178*10^-6, 5.20992*10^-6, 5.19937*10^-6, 5.14708*10^-6, 5.09046*10^-6, 5.05997*10^-6, 5.05491*10^-6, 5.04483*10^-6, 5.02975*10^-6, 5.01475*10^-6, 5.00976*10^-6, 4.99484*10^-6, 4.94071*10^-6, 4.93583*10^-6, 4.92125*10^-6}, {4.88266*10^-6, 4.8683*10^-6, 4.83978*10^-6, 4.83506*10^-6, 4.82091*10^-6, 4.79281*10^-6, 4.75572*10^-6, 4.75111*10^-6, 4.74192*10^-6, 4.72818*10^-6, 4.69636*10^-6, 4.68732*10^-6, 4.68282*10^-6, 4.64254*10^-6, 4.58965*10^-6, 4.56788*10^-6, 4.55489*10^-6, 4.55057*10^-6, 4.52908*10^-6, 4.5248*10^-6}, {4.50348*10^-6, 4.49924*10^-6, 4.4781*10^-6, 4.4655*10^-6, 4.46131*10^-6, 4.44044*10^-6, 4.43628*10^-6, 4.41559*10^-6, 4.40325*10^-6, 4.38687*10^-6, 4.32625*10^-6, 4.30632*10^-6, 4.30235*10^-6, 4.28259*10^-6, 4.26687*10^-6, 4.25515*10^-6, 4.23571*10^-6, 4.20105*10^-6, 4.1896*10^-6, 4.16682*10^-6}, {4.14423*10^-6, 4.14048*10^-6, 4.10699*10^-6, 4.09591*10^-6, 4.08855*10^-6, 4.07755*10^-6, 4.0666*10^-6, 4.03399*10^-6, 4.03039*10^-6, 4.01247*10^-6, 3.98758*10^-6, 3.97699*10^-6, 3.96995*10^-6, 3.96643*10^-6, 3.95942*10^-6, 3.91774*10^-6, 3.91429*10^-6, 3.89372*10^-6, 3.8835*10^-6, 3.85643*10^-6}, {3.843*10^-6, 3.83298*10^-6, 3.82299*10^-6, 3.79326*10^-6, 3.76713*10^-6, 3.76388*10^-6, 3.7574*10^-6, 3.74771*10^-6, 3.74449*10^-6, 3.73484*10^-6, 3.72524*10^-6, 3.70931*10^-6, 3.69981*10^-6, 3.6809*10^-6, 3.66214*10^-6, 3.63427*10^-6, 3.63119*10^-6, 3.62198*10^-6, 3.61586*10^-6, 3.58852*10^-6}, {3.57646*10^-6, 3.54066*10^-6, 3.53475*10^-6, 3.53179*10^-6, 3.5259*10^-6, 3.51709*10^-6, 3.51416*10^-6, 3.49666*10^-6, 3.49085*10^-6, 3.47065*10^-6, 3.42794*10^-6, 3.41388*10^-6, 3.40549*10^-6, 3.38879*10^-6, 3.36947*10^-6, 3.36124*10^-6, 3.34758*10^-6, 3.33131*10^-6, 3.32861*10^-6, 3.32322*10^-6}, {3.31515*10^-6, 3.30445*10^-6, 3.29646*10^-6, 3.2832*10^-6, 3.28055*10^-6, 3.27528*10^-6, 3.25691*10^-6, 3.24909*10^-6, 3.2413*10^-6, 3.23612*10^-6, 3.22837*10^-6, 3.22579*10^-6, 3.21295*10^-6, 3.2104*10^-6, 3.19004*10^-6, 3.1749*10^-6, 3.16487*10^-6, 3.14247*10^-6, 3.13752*10^-6, 3.13012*10^-6}, {3.11541*10^-6, 3.11297*10^-6, 3.10566*10^-6, 3.09837*10^-6, 3.09111*10^-6, 3.05757*10^-6, 3.05046*10^-6, 3.03395*10^-6, 3.02926*10^-6, 3.0199*10^-6, 3.00828*10^-6, 2.99902*10^-6, 2.98522*10^-6, 2.96469*10^-6, 2.96016*10^-6, 2.9579*10^-6, 2.95338*10^-6, 2.9265*10^-6, 2.91319*10^-6, 2.90658*10^-6}, {2.90437*10^-6, 2.88686*10^-6, 2.88033*10^-6, 2.87382*10^-6, 2.85872*10^-6, 2.84801*10^-6, 2.83312*10^-6, 2.82888*10^-6, 2.79743*10^-6, 2.7912*10^-6, 2.78499*10^-6, 2.77881*10^-6, 2.77059*10^-6, 2.76445*10^-6, 2.76037*10^-6, 2.75833*10^-6, 2.74616*10^-6, 2.7401*10^-6, 2.73607*10^-6, 2.73406*10^-6}, {2.72804*10^-6, 2.70615*10^-6, 2.70022*10^-6, 2.69825*10^-6, 2.69432*10^-6, 2.67671*10^-6, 2.67477*10^-6, 2.67088*10^-6, 2.65928*10^-6, 2.65735*10^-6, 2.65159*10^-6, 2.64775*10^-6, 2.62304*10^-6, 2.61738*10^-6, 2.61174*10^-6, 2.608*10^-6, 2.60052*10^-6, 2.59123*10^-6, 2.56182*10^-6, 2.5473*10^-6}, {2.5455*10^-6, 2.54009*10^-6, 2.5365*10^-6, 2.5347*10^-6, 2.53112*10^-6, 2.52933*10^-6, 2.52042*10^-6, 2.50801*10^-6, 2.50273*10^-6, 2.49921*10^-6, 2.4922*10^-6, 2.48348*10^-6, 2.47827*10^-6, 2.46102*10^-6, 2.45759*10^-6, 2.45588*10^-6, 2.45076*10^-6, 2.42538*10^-6, 2.42203*10^-6, 2.41534*10^-6}, {2.40702*10^-6, 2.40205*10^-6, 2.39709*10^-6, 2.39051*10^-6, 2.38559*10^-6, 2.37579*10^-6, 2.37254*10^-6, 2.36767*10^-6, 2.36605*10^-6, 2.36121*10^-6, 2.35799*10^-6, 2.35317*10^-6, 2.35156*10^-6, 2.34357*10^-6, 2.34198*10^-6, 2.32929*10^-6, 2.32455*10^-6, 2.30888*10^-6, 2.30577*10^-6, 2.29646*10^-6}, {2.28567*10^-6, 2.26432*10^-6, 2.25978*10^-6, 2.24476*10^-6, 2.24177*10^-6, 2.22841*10^-6, 2.2225*10^-6, 2.21809*10^-6, 2.21516*10^-6, 2.21077*10^-6, 2.20058*10^-6, 2.19623*10^-6, 2.1919*10^-6, 2.18471*10^-6, 2.18327*10^-6, 2.17612*10^-6, 2.16759*10^-6, 2.16192*10^-6, 2.15488*10^-6, 2.15347*10^-6}, {2.14647*10^-6, 2.14089*10^-6, 2.13256*10^-6, 2.12565*10^-6, 2.10922*10^-6, 2.10786*10^-6, 2.10514*10^-6, 2.09972*10^-6, 2.09567*10^-6, 2.09298*10^-6, 2.08761*10^-6, 2.07559*10^-6, 2.06896*10^-6, 2.065*10^-6, 2.06105*10^-6, 2.05974*10^-6, 2.0558*10^-6, 2.04926*10^-6, 2.04146*10^-6, 2.04017*10^-6}, {2.03371*10^-6, 2.02985*10^-6, 2.026*10^-6, 2.02216*10^-6, 2.01705*10^-6, 2.01324*10^-6, 2.00691*10^-6, 2.00312*10^-6, 2.00186*10^-6, 1.99809*10^-6, 1.99433*10^-6, 1.99058*10^-6, 1.98435*10^-6, 1.97939*10^-6, 1.96463*10^-6, 1.96096*10^-6, 1.9476*10^-6, 1.94639*10^-6, 1.93558*10^-6, 1.93319*10^-6}, {1.92842*10^-6, 1.92248*10^-6, 1.90483*10^-6, 1.90017*10^-6, 1.88973*10^-6, 1.88743*10^-6, 1.88627*10^-6, 1.88053*10^-6, 1.8771*10^-6, 1.87595*10^-6, 1.87253*10^-6, 1.87026*10^-6, 1.86007*10^-6, 1.85557*10^-6, 1.84884*10^-6, 1.83883*10^-6, 1.83*10^-6, 1.8267*10^-6, 1.8256*10^-6, 1.81904*10^-6}, {1.81578*10^-6, 1.81035*10^-6, 1.80927*10^-6, 1.80387*10^-6, 1.8028*10^-6, 1.79957*10^-6, 1.79422*10^-6, 1.78677*10^-6, 1.78465*10^-6, 1.772*10^-6, 1.77095*10^-6, 1.7626*10^-6, 1.76156*10^-6, 1.75638*10^-6, 1.75534*10^-6, 1.75019*10^-6, 1.73994*10^-6, 1.7379*10^-6, 1.73688*10^-6, 1.73485*10^-6}, {1.7308*10^-6, 1.72273*10^-6, 1.71972*10^-6, 1.71671*10^-6, 1.71571*10^-6, 1.70974*10^-6, 1.70182*10^-6, 1.69788*10^-6, 1.69591*10^-6, 1.69297*10^-6, 1.67838*10^-6, 1.67741*10^-6, 1.6726*10^-6, 1.67164*10^-6, 1.66876*10^-6, 1.66684*10^-6, 1.66398*10^-6, 1.66112*10^-6, 1.65732*10^-6, 1.65448*10^-6}, {1.65259*10^-6, 1.64694*10^-6, 1.64412*10^-6, 1.64038*10^-6, 1.63479*10^-6, 1.63294*10^-6, 1.62647*10^-6, 1.62095*10^-6, 1.61637*10^-6, 1.60547*10^-6, 1.60276*10^-6, 1.59736*10^-6, 1.59467*10^-6, 1.59378*10^-6, 1.58399*10^-6, 1.58045*10^-6, 1.57253*10^-6, 1.56816*10^-6, 1.56554*10^-6, 1.55947*10^-6}, {1.55774*10^-6, 1.55687*10^-6, 1.55429*10^-6, 1.54999*10^-6, 1.54656*10^-6, 1.544*10^-6, 1.5423*10^-6, 1.53975*10^-6, 1.52709*10^-6, 1.52124*10^-6, 1.51707*10^-6, 1.51624*10^-6, 1.51128*10^-6, 1.50716*10^-6, 1.50634*10^-6, 1.49978*10^-6, 1.49897*10^-6, 1.49165*10^-6, 1.48198*10^-6, 1.47479*10^-6}, {1.47241*10^-6, 1.46608*10^-6, 1.459*10^-6, 1.45666*10^-6, 1.45587*10^-6, 1.44887*10^-6, 1.44732*10^-6, 1.44501*10^-6, 1.44423*10^-6, 1.44038*10^-6, 1.43732*10^-6, 1.43349*10^-6, 1.43121*10^-6, 1.42893*10^-6, 1.4259*10^-6, 1.42438*10^-6, 1.42212*10^-6, 1.42137*10^-6, 1.41761*10^-6, 1.41686*10^-6}, {1.41237*10^-6, 1.41088*10^-6, 1.40865*10^-6, 1.40642*10^-6, 1.40568*10^-6, 1.40125*10^-6, 1.39977*10^-6, 1.39464*10^-6, 1.38807*10^-6, 1.38662*10^-6, 1.38444*10^-6, 1.37723*10^-6, 1.3758*10^-6, 1.37293*10^-6, 1.37079*10^-6, 1.36937*10^-6, 1.36652*10^-6, 1.3651*10^-6, 1.36015*10^-6, 1.35804*10^-6}, {1.35664*10^-6, 1.35173*10^-6, 1.34755*10^-6, 1.34616*10^-6, 1.34547*10^-6, 1.33512*10^-6, 1.33375*10^-6, 1.32558*10^-6, 1.32354*10^-6, 1.32152*10^-6, 1.31747*10^-6, 1.31345*10^-6, 1.30878*10^-6, 1.30679*10^-6, 1.30546*10^-6, 1.3048*10^-6, 1.30347*10^-6, 1.29754*10^-6, 1.29557*10^-6, 1.29165*10^-6}} N[(11^4/((11*Data)^2 + 11) )] {{14641./(11. + 121. ("2")^2), 13.31, 4.82246, 2.46481, 0.999249, 0.715591, 0.418553, 0.335096, 0.228694, 0.143861, 0.125899, 0.0883798, 0.0719771, 0.0654376, 0.0547737, 0.0430744, 0.0347592, 0.0325173, 0.0269542, 0.0240027}, {0.0227056, 0.0193876, 0.017564, 0.0152757, 0.0128599, 0.0118615, 0.0114053, 0.0105685, 0.0101842, 0.00947601, 0.00750197, 0.00705083, 0.00644677, 0.00626259, 0.00545018, 0.00530676, 0.0049089, 0.00455416, 0.00433861, 0.00404289}, {0.0037764, 0.00369341, 0.00331679, 0.0032484, 0.00311783, 0.00305547, 0.00271781, 0.00243318, 0.00234819, 0.00230735, 0.00222881, 0.00211831, 0.00208329, 0.0019206, 0.00183197, 0.00174934, 0.00167217, 0.00164758, 0.00157698, 0.0015324}, {0.00151082, 0.00140945, 0.00128383, 0.00125102, 0.00123508, 0.00120411, 0.00110441, 0.00106543, 0.00100491, 0.000993423, 0.000971037, 0.00093885, 0.000898365, 0.000869696, 0.000842377, 0.000824874, 0.000799624, 0.000767722, 0.000752482, 0.000723333}, {0.000689219, 0.000682686, 0.000651374, 0.000645371, 0.00062785, 0.000616563, 0.000600195, 0.000579366, 0.000569355, 0.000564447, 0.000554819, 0.000527368, 0.000510185, 0.000501906, 0.000485942, 0.000478244, 0.000467035, 0.000445769, 0.000442366, 0.000413419}, {0.000404399, 0.000390009, 0.000381741, 0.000373732, 0.000371119, 0.000363441, 0.000351163, 0.000344093, 0.000337234, 0.000334993, 0.000328404, 0.000322006, 0.000317845, 0.000315794, 0.000303897, 0.000294489, 0.00029266, 0.000289052, 0.000283765, 0.000278621}, {0.000276938, 0.00026715, 0.000264002, 0.000259384, 0.000253413, 0.000246235, 0.000240709, 0.00023406, 0.000228937, 0.000225205, 0.000221563, 0.000219183, 0.000214539, 0.000211151, 0.000208937, 0.000204613, 0.000202501, 0.00019536, 0.000190488, 0.000184879}, {0.000183969, 0.000179514, 0.000178643, 0.000176919, 0.000176066, 0.000171894, 0.000166298, 0.000164749, 0.000163983, 0.000162466, 0.000157321, 0.000155895, 0.00015519, 0.000153794, 0.000147086, 0.000145797, 0.00014327, 0.000140202, 0.000137818, 0.000136649}, {0.000134923, 0.000133229, 0.000129399, 0.000128336, 0.000126764, 0.000125221, 0.000123208, 0.000121729, 0.000118851, 0.000117914, 0.00011653, 0.000116074, 0.000113833, 0.000113393, 0.000112087, 0.00010996, 0.000109542, 0.000107487, 0.000107083, 0.000105884}, {0.000102406, 0.000101657, 0.000101285, 0.000100548, 0.0000994568, 0.0000983835, 0.0000969793, 0.0000959458, 0.0000949287, 0.0000913345, 0.0000910179, 0.0000894594, 0.0000882412, 0.0000867532, 0.0000858784, 0.0000850167, 0.0000838879, 0.0000822363, 0.0000816966, 0.000080897}, {0.000080109, 0.000079849, 0.0000790762, 0.000077564, 0.0000763368, 0.0000741999, 0.0000739681, 0.0000735076, 0.0000728248, 0.0000725994, 0.0000719292, 0.0000714876, 0.0000712683, 0.0000708328, 0.0000695498, 0.0000693393, 0.0000687137, 0.0000653234, 0.0000647513, 0.0000641866}, {0.0000634451, 0.000061823, 0.0000609485, 0.0000597552, 0.0000594207, 0.0000592544, 0.0000589241, 0.0000584338, 0.0000577894, 0.0000574712, 0.0000573131, 0.0000568427, 0.0000559191, 0.0000551665, 0.0000550178, 0.0000547222, 0.0000545753, 0.0000542832, 0.0000538496, 0.0000529976}, {0.0000521658, 0.000051622, 0.0000508222, 0.0000504293, 0.0000501698, 0.0000497844, 0.0000492774, 0.0000490267, 0.0000485312, 0.0000482863, 0.0000474434, 0.0000472066, 0.0000468547, 0.0000467383, 0.0000465068, 0.0000461627, 0.0000460489, 0.0000457099, 0.0000451531, 0.0000440697}, {0.0000437523, 0.0000435426, 0.0000434383, 0.0000422155, 0.0000420167, 0.0000419178, 0.0000414287, 0.000040853, 0.0000407582, 0.0000402892, 0.0000399198, 0.000039646, 0.0000393751, 0.0000391069, 0.0000383187, 0.0000380612, 0.000037891, 0.0000378063, 0.0000373042, 0.0000368934}, {0.0000364093, 0.0000360918, 0.0000354692, 0.0000349376, 0.0000347134, 0.0000345651, 0.0000344913, 0.0000343445, 0.0000342714, 0.0000339095, 0.0000334828, 0.0000332724, 0.000033064, 0.0000324505, 0.0000323833, 0.0000318538, 0.0000317886, 0.0000310836, 0.0000308954, 0.0000306471}, {0.0000304629, 0.000030341, 0.0000302803, 0.0000301595, 0.00002992, 0.0000297422, 0.0000294495, 0.0000293915, 0.0000291039, 0.0000287083, 0.0000284307, 0.000028266, 0.000027941, 0.0000278873, 0.0000277805, 0.0000277274, 0.0000274638, 0.0000271524, 0.0000271011, 0.0000266953}, {0.0000266452, 0.0000264958, 0.0000263968, 0.0000263476, 0.0000261034, 0.0000259105, 0.0000254842, 0.000024932, 0.0000248417, 0.0000247071, 0.0000245295, 0.0000241798, 0.0000241367, 0.0000240506, 0.00002388, 0.0000235441, 0.0000235026, 0.00002342, 0.000023256, 0.0000231341}, {0.0000230132, 0.0000229331, 0.0000226954, 0.0000226561, 0.0000222308, 0.0000221169, 0.0000220792, 0.0000219664, 0.0000218917, 0.0000217804, 0.000021524, 0.0000214154, 0.0000213435, 0.0000213077, 0.0000212008, 0.00002113, 0.0000210245, 0.0000208157, 0.0000207125, 0.00002061}, {0.0000203739, 0.0000203072, 0.0000202077, 0.000020011, 0.0000198814, 0.000019785, 0.0000197212, 0.0000193136, 0.0000190388, 0.0000188887, 0.0000187698, 0.0000187108, 0.0000186228, 0.0000185936, 0.0000185065, 0.0000181921, 0.000018024, 0.0000179962, 0.0000177761, 0.0000176676}, {0.0000176137, 0.0000174535, 0.0000172694, 0.0000171397, 0.0000171139, 0.0000170625, 0.0000169605, 0.0000168845, 0.0000168091, 0.0000167591, 0.0000167342, 0.0000166845, 0.0000166104, 0.0000165123, 0.0000164637, 0.0000164394, 0.0000163669, 0.0000162472, 0.0000162234, 0.0000161052}, {0.0000160116, 0.0000159651, 0.000015804, 0.0000156904, 0.0000155557, 0.0000155334, 0.0000154668, 0.0000154227, 0.0000154007, 0.0000152263, 0.0000150762, 0.0000150337, 0.0000149703, 0.0000148864, 0.000014824, 0.0000147826, 0.0000145983, 0.0000145175, 0.0000144174, 0.0000143579}, {0.0000142987, 0.0000142204, 0.0000141234, 0.0000140083, 0.0000138758, 0.0000138383, 0.0000137823, 0.0000137267, 0.0000137082, 0.0000134534, 0.0000134355, 0.0000133464, 0.0000132758, 0.0000132406, 0.0000131189, 0.0000130844, 0.0000130158, 0.0000129139, 0.0000128635, 0.0000127634}, {0.0000127303, 0.0000126809, 0.0000125183, 0.0000124381, 0.0000124222, 0.0000122958, 0.0000120945, 0.0000120639, 0.0000120487, 0.000011958, 0.000011913, 0.0000118832, 0.0000117943, 0.0000117502, 0.0000116919, 0.0000116628, 0.0000116051, 0.0000114486, 0.0000114345, 0.0000114064}, {0.0000113924, 0.000011309, 0.0000111178, 0.0000111044, 0.0000110641, 0.0000110241, 0.0000109843, 0.0000109578, 0.0000109184, 0.0000109053, 0.0000108271, 0.0000108012, 0.0000107242, 0.0000107115, 0.000010648, 0.0000106354, 0.0000105352, 0.0000105228, 0.0000104242, 0.0000103875}, {0.0000102669, 0.0000101718, 0.0000101248, 0.0000101014, 0.0000100897, 0.0000100665, 0.0000100549, 9.92855*10^-6, 9.8832*10^-6, 9.81575*10^-6, 9.78229*10^-6, 9.7269*10^-6, 9.71588*10^-6, 9.69389*10^-6, 9.66105*10^-6, 9.65014*10^-6, 9.61752*10^-6, 9.56352*10^-6, 9.55277*10^-6, 9.48868*10^-6}, {9.43576*10^-6, 9.42523*10^-6, 9.37283*10^-6, 9.30022*10^-6, 9.26935*10^-6, 9.24886*10^-6, 9.21825*10^-6, 9.17768*10^-6, 9.14742*10^-6, 9.11732*10^-6, 9.03775*10^-6, 8.97876*10^-6, 8.96899*10^-6, 8.94949*10^-6, 8.88172*10^-6, 8.85292*10^-6, 8.83379*10^-6, 8.79573*10^-6, 8.74849*10^-6, 8.71097*10^-6}, {8.68299*10^-6, 8.65515*10^-6, 8.55419*10^-6, 8.52696*10^-6, 8.51791*10^-6, 8.47289*10^-6, 8.41046*10^-6, 8.39275*10^-6, 8.36629*10^-6, 8.28765*10^-6, 8.27898*10^-6, 8.23584*10^-6, 8.176*10^-6, 8.15903*10^-6, 8.15056*10^-6, 8.10841*10^-6, 8.04996*10^-6, 8.03338*10^-6, 8.00036*10^-6, 7.92681*10^-6}, {7.91061*10^-6, 7.88639*10^-6, 7.87834*10^-6, 7.86228*10^-6, 7.83829*10^-6, 7.83032*10^-6, 7.78273*10^-6, 7.76696*10^-6, 7.68884*10^-6, 7.60427*10^-6, 7.55872*10^-6, 7.55117*10^-6, 7.5361*10^-6, 7.51358*10^-6, 7.49116*10^-6, 7.48371*10^-6, 7.46143*10^-6, 7.38057*10^-6, 7.37328*10^-6, 7.35149*10^-6}, {7.29385*10^-6, 7.2724*10^-6, 7.2298*10^-6, 7.22274*10^-6, 7.20161*10^-6, 7.15963*10^-6, 7.10422*10^-6, 7.09734*10^-6, 7.08361*10^-6, 7.06309*10^-6, 7.01555*10^-6, 7.00205*10^-6, 6.99532*10^-6, 6.93516*10^-6, 6.85615*10^-6, 6.82362*10^-6, 6.80422*10^-6, 6.79777*10^-6, 6.76566*10^-6, 6.75926*10^-6}, {6.72742*10^-6, 6.72108*10^-6, 6.68951*10^-6, 6.67068*10^-6, 6.66442*10^-6, 6.63325*10^-6, 6.62704*10^-6, 6.59613*10^-6, 6.57769*10^-6, 6.55322*10^-6, 6.46266*10^-6, 6.4329*10^-6, 6.42697*10^-6, 6.39744*10^-6, 6.37397*10^-6, 6.35645*10^-6, 6.32742*10^-6, 6.27565*10^-6, 6.25853*10^-6, 6.22451*10^-6}, {6.19077*10^-6, 6.18517*10^-6, 6.13513*10^-6, 6.11859*10^-6, 6.10759*10^-6, 6.09116*10^-6, 6.07479*10^-6, 6.02609*10^-6, 6.02071*10^-6, 5.99394*10^-6, 5.95676*10^-6, 5.94093*10^-6, 5.93042*10^-6, 5.92517*10^-6, 5.91469*10^-6, 5.85242*10^-6, 5.84727*10^-6, 5.81655*10^-6, 5.80127*10^-6, 5.76084*10^-6}, {5.74078*10^-6, 5.7258*10^-6, 5.71089*10^-6, 5.66648*10^-6, 5.62744*10^-6, 5.62259*10^-6, 5.61291*10^-6, 5.59843*10^-6, 5.59362*10^-6, 5.57921*10^-6, 5.56486*10^-6, 5.54107*10^-6, 5.52687*10^-6, 5.49863*10^-6, 5.47061*10^-6, 5.42897*10^-6, 5.42437*10^-6, 5.41062*10^-6, 5.40147*10^-6, 5.36062*10^-6}, {5.34262*10^-6, 5.28913*10^-6, 5.2803*10^-6, 5.27589*10^-6, 5.26709*10^-6, 5.25392*10^-6, 5.24955*10^-6, 5.2234*10^-6, 5.21473*10^-6, 5.18455*10^-6, 5.12076*10^-6, 5.09975*10^-6, 5.08721*10^-6, 5.06227*10^-6, 5.0334*10^-6, 5.02111*10^-6, 5.00071*10^-6, 4.9764*10^-6, 4.97237*10^-6, 4.96431*10^-6}, {4.95227*10^-6, 4.93628*10^-6, 4.92433*10^-6, 4.90453*10^-6, 4.90058*10^-6, 4.8927*10^-6, 4.86527*10^-6, 4.85358*10^-6, 4.84194*10^-6, 4.8342*10^-6, 4.82262*10^-6, 4.81877*10^-6, 4.7996*10^-6, 4.79578*10^-6, 4.76537*10^-6, 4.74275*10^-6, 4.72777*10^-6, 4.6943*10^-6, 4.68691*10^-6, 4.67586*10^-6}, {4.65388*10^-6, 4.65023*10^-6, 4.63931*10^-6, 4.62843*10^-6, 4.61759*10^-6, 4.56748*10^-6, 4.55685*10^-6, 4.53219*10^-6, 4.52518*10^-6, 4.51122*10^-6, 4.49384*10^-6, 4.48002*10^-6, 4.4594*10^-6, 4.42874*10^-6, 4.42197*10^-6, 4.41859*10^-6, 4.41184*10^-6, 4.37168*10^-6, 4.35181*10^-6, 4.34192*10^-6}, {4.33863*10^-6, 4.31246*10^-6, 4.30271*10^-6, 4.29299*10^-6, 4.27044*10^-6, 4.25444*10^-6, 4.23219*10^-6, 4.22586*10^-6, 4.17888*10^-6, 4.16957*10^-6, 4.1603*10^-6, 4.15106*10^-6, 4.13878*10^-6, 4.12961*10^-6, 4.12352*10^-6, 4.12047*10^-6, 4.10228*10^-6, 4.09324*10^-6, 4.08722*10^-6, 4.08422*10^-6}, {4.07523*10^-6, 4.04252*10^-6, 4.03367*10^-6, 4.03072*10^-6, 4.02484*10^-6, 3.99855*10^-6, 3.99564*10^-6, 3.98984*10^-6, 3.97251*10^-6, 3.96963*10^-6, 3.96101*10^-6, 3.95529*10^-6, 3.91836*10^-6, 3.90991*10^-6, 3.90149*10^-6, 3.8959*10^-6, 3.88473*10^-6, 3.87085*10^-6, 3.82692*10^-6, 3.80523*10^-6}, {3.80253*10^-6, 3.79446*10^-6, 3.78909*10^-6, 3.78641*10^-6, 3.78106*10^-6, 3.77838*10^-6, 3.76506*10^-6, 3.74654*10^-6, 3.73864*10^-6, 3.73339*10^-6, 3.72292*10^-6, 3.70989*10^-6, 3.70211*10^-6, 3.67634*10^-6, 3.67122*10^-6, 3.66866*10^-6, 3.66101*10^-6, 3.6231*10^-6, 3.61809*10^-6, 3.6081*10^-6}, {3.59567*10^-6, 3.58824*10^-6, 3.58084*10^-6, 3.571*10^-6, 3.56365*10^-6, 3.54902*10^-6, 3.54416*10^-6, 3.53689*10^-6, 3.53448*10^-6, 3.52724*10^-6, 3.52243*10^-6, 3.51523*10^-6, 3.51283*10^-6, 3.50089*10^-6, 3.49851*10^-6, 3.47955*10^-6, 3.47248*10^-6, 3.44907*10^-6, 3.44442*10^-6, 3.43051*10^-6}, {3.41439*10^-6, 3.3825*10^-6, 3.37572*10^-6, 3.35328*10^-6, 3.34882*10^-6, 3.32885*10^-6, 3.32004*10^-6, 3.31345*10^-6, 3.30907*10^-6, 3.30251*10^-6, 3.28729*10^-6, 3.28079*10^-6, 3.27432*10^-6, 3.26357*10^-6, 3.26143*10^-6, 3.25075*10^-6, 3.238*10^-6, 3.22954*10^-6, 3.21901*10^-6, 3.21691*10^-6}, {3.20645*10^-6, 3.19811*10^-6, 3.18567*10^-6, 3.17536*10^-6, 3.15081*10^-6, 3.14878*10^-6, 3.14472*10^-6, 3.13662*10^-6, 3.13057*10^-6, 3.12655*10^-6, 3.11852*10^-6, 3.10058*10^-6, 3.09067*10^-6, 3.08475*10^-6, 3.07885*10^-6, 3.07689*10^-6, 3.07101*10^-6, 3.06125*10^-6, 3.04959*10^-6, 3.04766*10^-6}, {3.03801*10^-6, 3.03224*10^-6, 3.02649*10^-6, 3.02075*10^-6, 3.01313*10^-6, 3.00743*10^-6, 2.99797*10^-6, 2.99232*10^-6, 2.99044*10^-6, 2.9848*10^-6, 2.97919*10^-6, 2.97358*10^-6, 2.96428*10^-6, 2.95687*10^-6, 2.93481*10^-6, 2.92933*10^-6, 2.90938*10^-6, 2.90758*10^-6, 2.89142*10^-6, 2.88785*10^-6}, {2.88072*10^-6, 2.87185*10^-6, 2.84549*10^-6, 2.83852*10^-6, 2.82293*10^-6, 2.81949*10^-6, 2.81777*10^-6, 2.80919*10^-6, 2.80406*10^-6, 2.80235*10^-6, 2.79724*10^-6, 2.79384*10^-6, 2.77862*10^-6, 2.77189*10^-6, 2.76185*10^-6, 2.74689*10^-6, 2.7337*10^-6, 2.72877*10^-6, 2.72713*10^-6, 2.71733*10^-6}, {2.71245*10^-6, 2.70435*10^-6, 2.70273*10^-6, 2.69467*10^-6, 2.69307*10^-6, 2.68825*10^-6, 2.68025*10^-6, 2.66912*10^-6, 2.66595*10^-6, 2.64706*10^-6, 2.64549*10^-6, 2.63302*10^-6, 2.63147*10^-6, 2.62372*10^-6, 2.62218*10^-6, 2.61447*10^-6, 2.59917*10^-6, 2.59612*10^-6, 2.5946*10^-6, 2.59157*10^-6}, {2.58551*10^-6, 2.57346*10^-6, 2.56896*10^-6, 2.56447*10^-6, 2.56298*10^-6, 2.55405*10^-6, 2.54222*10^-6, 2.53633*10^-6, 2.5334*10^-6, 2.52901*10^-6, 2.50721*10^-6, 2.50577*10^-6, 2.49857*10^-6, 2.49714*10^-6, 2.49284*10^-6, 2.48998*10^-6, 2.4857*10^-6, 2.48143*10^-6, 2.47575*10^-6, 2.47151*10^-6}, {2.46868*10^-6, 2.46024*10^-6, 2.45604*10^-6, 2.45045*10^-6, 2.4421*10^-6, 2.43933*10^-6, 2.42966*10^-6, 2.42142*10^-6, 2.41458*10^-6, 2.39829*10^-6, 2.39424*10^-6, 2.38618*10^-6, 2.38217*10^-6, 2.38083*10^-6, 2.3662*10^-6, 2.36092*10^-6, 2.34909*10^-6, 2.34256*10^-6, 2.33865*10^-6, 2.32957*10^-6}, {2.32699*10^-6, 2.3257*10^-6, 2.32183*10^-6, 2.31542*10^-6, 2.3103*10^-6, 2.30647*10^-6, 2.30393*10^-6, 2.30012*10^-6, 2.28121*10^-6, 2.27246*10^-6, 2.26625*10^-6, 2.26501*10^-6, 2.25759*10^-6, 2.25143*10^-6, 2.2502*10^-6, 2.24042*10^-6, 2.2392*10^-6, 2.22827*10^-6, 2.21383*10^-6, 2.20309*10^-6}, {2.19952*10^-6, 2.19007*10^-6, 2.1795*10^-6, 2.17599*10^-6, 2.17482*10^-6, 2.16437*10^-6, 2.16205*10^-6, 2.15859*10^-6, 2.15743*10^-6, 2.15168*10^-6, 2.1471*10^-6, 2.14139*10^-6, 2.13798*10^-6, 2.13457*10^-6, 2.13004*10^-6, 2.12778*10^-6, 2.1244*10^-6, 2.12328*10^-6, 2.11766*10^-6, 2.11654*10^-6}, {2.10984*10^-6, 2.10761*10^-6, 2.10428*10^-6, 2.10095*10^-6, 2.09985*10^-6, 2.09322*10^-6, 2.09102*10^-6, 2.08335*10^-6, 2.07354*10^-6, 2.07137*10^-6, 2.06812*10^-6, 2.05735*10^-6, 2.0552*10^-6, 2.05093*10^-6, 2.04772*10^-6, 2.0456*10^-6, 2.04135*10^-6, 2.03923*10^-6, 2.03183*10^-6, 2.02868*10^-6}, {2.02658*10^-6, 2.01926*10^-6, 2.01301*10^-6, 2.01093*10^-6, 2.0099*10^-6, 1.99444*10^-6, 1.9924*10^-6, 1.98018*10^-6, 1.97715*10^-6, 1.97412*10^-6, 1.96808*10^-6, 1.96207*10^-6, 1.95509*10^-6, 1.95211*10^-6, 1.95013*10^-6, 1.94914*10^-6, 1.94716*10^-6, 1.9383*10^-6, 1.93536*10^-6, 1.9295*10^-6}} In[14]:= N[(Data^4/((p*Data)^2 + Data) )] Out[14]= {{("2")^4/("2" + 9. ("2")^2), 0.964286, 2.71739, 5.35938, 13.31, 18.6186, 31.9026, 39.8779, 58.4952, 93.0878, 106.396, 151.656, 186.273, 204.915, 244.866, 311.458, 386.051, 412.693, 497.952, 559.236}, {591.211, 692.471, 764.421, 879.014, 1044.25, 1132.2, 1177.51, 1270.79, 1318.77, 1417.38, 1790.54, 1905.16, 2083.75, 2145.06, 2464.94, 2531.58, 2736.84, 2950.1, 3096.72, 3323.31}, {3557.9, 3637.88, 4051.09, 4136.4, 4309.68, 4397.66, 4944.17, 5522.69, 5722.64, 5823.95, 6029.24, 6343.83, 6450.47, 6997.01, 7335.61, 7682.2, 8036.79, 8156.77, 8522.03, 8769.98}, {8895.29, 9535.16, 10468.3, 10742.9, 10881.6, 11161.5, 12169.4, 12614.6, 13374.5, 13529.1, 13841.1, 14315.7, 14960.9, 15454.2, 15955.4, 16294.1, 16808.6, 17507.2, 17861.8, 18581.7}, {19501.6, 19688.2, 20634.8, 20826.8, 21408., 21800., 22394.6, 23199.8, 23607.8, 23813.1, 24226.3, 25487.5, 26346.1, 26780.7, 27660.6, 28105.9, 28780.5, 30153.7, 30385.7, 32513.4}, {33238.7, 34465.2, 35211.8, 35966.4, 36219.7, 36985., 38278.2, 39064.8, 39859.4, 40126., 40931.3, 41744.5, 42291.2, 42565.8, 44232.3, 45645.5, 45930.8, 46504.1, 47370.7, 48245.3}, {48538.6, 50317.1, 50917.1, 51823.7, 53044.9, 54591.5, 55844.7, 57431.2, 58716.5, 59689.7, 60671., 61329.6, 62657.5, 63662.8, 64337.4, 65697.3, 66382.6, 68809.1, 70568.9, 72710.1}, {73070.1, 74883.3, 75248.6, 75981.9, 76349.9, 78203.1, 80834.9, 81594.9, 81976.2, 82741.5, 85448., 86229.2, 86621.2, 87407.8, 91394.2, 92202.2, 93828.8, 95882., 97540.5, 98375.2}, {99633.8, 100900., 103887., 104748., 106047., 107353., 109108., 110433., 113108., 114006., 115361., 115814., 118094., 118553., 119934., 122254., 122720., 125067., 125539., 126960.}, {131272., 132240., 132725., 133699., 135165., 136640., 138618., 140112., 141613., 147186., 147698., 150271., 152346., 154959., 156537., 158124., 160252., 163470., 164550., 166177.}, {167812., 168358., 170004., 173318., 176105., 181176., 181744., 182883., 184598., 185171., 186896., 188051., 188629., 189789., 193290., 193877., 195642., 205797., 207615., 209442.}, {211890., 217450., 220569., 224975., 226241., 226876., 228148., 230062., 232628., 233916., 234561., 236502., 240409., 243688., 244347., 245667., 246328., 247654., 249648., 253661.}, {257707., 260421., 264520., 266581., 267960., 270034., 272813., 274207., 277007., 278413., 283359., 284780., 286919., 287634., 289066., 291220., 291940., 294105., 297732., 305052.}, {307265., 308745., 309486., 318451., 319958., 320712., 324499., 329072., 329838., 333677., 336765., 339091., 341424., 343765., 350837., 353210., 354797., 355591., 360378., 364391.}, {369236., 372484., 379023., 384790., 387276., 388937., 389769., 391436., 392270., 396457., 401510., 404049., 406595., 414283., 415142., 422043., 422909., 432501., 435136., 438661.}, {441314., 443087., 443975., 445754., 449322., 452007., 456500., 457402., 461922., 468287., 472860., 475615., 481148., 482073., 483926., 484854., 489508., 495121., 496059., 503600.}, {504547., 507392., 509294., 510246., 515019., 518853., 527533., 539218., 541178., 544125., 548066., 555991., 556986., 558978., 562972., 571004., 572012., 574031., 578079., 581124.}, {584177., 586217., 592358., 593385., 604737., 607851., 608891., 612016., 614104., 617243., 624598., 627763., 629877., 630936., 634117., 636243., 639437., 645850., 649069., 652296.}, {659855., 662023., 665282., 671823., 676202., 679495., 681695., 696081., 706129., 711742., 716249., 718507., 721902., 723035., 726441., 738995., 745888., 747040., 756288., 760933.}, {763261., 770266., 778479., 784373., 785554., 787919., 792660., 796226., 799799., 802186., 803380., 805772., 809367., 814172., 816580., 817785., 821407., 827460., 828673., 834753.}, {839633., 842078., 850665., 856824., 864246., 865486., 869211., 871699., 872944., 882939., 891730., 894250., 898037., 903098., 906904., 909445., 920925., 926050., 932476., 936343.}, {940218., 945396., 951889., 959710., 968876., 971502., 975449., 979403., 980723., 999296., 1.00063*10^6, 1.00731*10^6, 1.01267*10^6, 1.01535*10^6, 1.02478*10^6, 1.02748*10^6, 1.0329*10^6, 1.04104*10^6, 1.04513*10^6, 1.05332*10^6}, {1.05606*10^6, 1.06018*10^6, 1.07395*10^6, 1.08087*10^6, 1.08225*10^6, 1.09338*10^6, 1.11158*10^6, 1.11439*10^6, 1.1158*10^6, 1.12427*10^6, 1.12851*10^6, 1.13135*10^6, 1.13987*10^6, 1.14415*10^6, 1.14986*10^6, 1.15272*10^6, 1.15845*10^6, 1.17429*10^6, 1.17574*10^6, 1.17863*10^6}, {1.18008*10^6, 1.18879*10^6, 1.20923*10^6, 1.21069*10^6, 1.2151*10^6, 1.21951*10^6, 1.22393*10^6, 1.22688*10^6, 1.23132*10^6, 1.2328*10^6, 1.2417*10^6, 1.24467*10^6, 1.25361*10^6, 1.25511*10^6, 1.26259*10^6, 1.26408*10^6, 1.2761*10^6, 1.27761*10^6, 1.2897*10^6, 1.29424*10^6}, {1.30946*10^6, 1.32169*10^6, 1.32783*10^6, 1.3309*10^6, 1.33244*10^6, 1.33552*10^6, 1.33706*10^6, 1.35408*10^6, 1.36029*10^6, 1.36964*10^6, 1.37432*10^6, 1.38215*10^6, 1.38372*10^6, 1.38686*10^6, 1.39157*10^6, 1.39314*10^6, 1.39787*10^6, 1.40576*10^6, 1.40734*10^6, 1.41685*10^6}, {1.4248*10^6, 1.42639*10^6, 1.43436*10^6, 1.44556*10^6, 1.45037*10^6, 1.45359*10^6, 1.45841*10^6, 1.46486*10^6, 1.46971*10^6, 1.47456*10^6, 1.48754*10^6, 1.49731*10^6, 1.49895*10^6, 1.50221*10^6, 1.51367*10^6, 1.5186*10^6, 1.52189*10^6, 1.52847*10^6, 1.53673*10^6, 1.54335*10^6}, {1.54832*10^6, 1.5533*10^6, 1.57163*10^6, 1.57665*10^6, 1.57833*10^6, 1.58671*10^6, 1.59849*10^6, 1.60187*10^6, 1.60693*10^6, 1.62218*10^6, 1.62388*10^6, 1.63238*10^6, 1.64433*10^6, 1.64775*10^6, 1.64946*10^6, 1.65804*10^6, 1.67008*10^6, 1.67353*10^6, 1.68043*10^6, 1.69602*10^6}, {1.6995*10^6, 1.70472*10^6, 1.70646*10^6, 1.70994*10^6, 1.71518*10^6, 1.71692*10^6, 1.72742*10^6, 1.73093*10^6, 1.74852*10^6, 1.76796*10^6, 1.77862*10^6, 1.7804*10^6, 1.78396*10^6, 1.7893*10^6, 1.79466*10^6, 1.79644*10^6, 1.80181*10^6, 1.82155*10^6, 1.82335*10^6, 1.82876*10^6}, {1.84321*10^6, 1.84864*10^6, 1.85954*10^6, 1.86135*10^6, 1.86682*10^6, 1.87776*10^6, 1.89241*10^6, 1.89424*10^6, 1.89791*10^6, 1.90343*10^6, 1.91633*10^6, 1.92002*10^6, 1.92187*10^6, 1.93854*10^6, 1.96088*10^6, 1.97023*10^6, 1.97585*10^6, 1.97772*10^6, 1.98711*10^6, 1.98899*10^6}, {1.9984*10^6, 2.00029*10^6, 2.00973*10^6, 2.0154*10^6, 2.01729*10^6, 2.02677*10^6, 2.02867*10^6, 2.03818*10^6, 2.04389*10^6, 2.05153*10^6, 2.08027*10^6, 2.0899*10^6, 2.09183*10^6, 2.10148*10^6, 2.10922*10^6, 2.11503*10^6, 2.12474*10^6, 2.14227*10^6, 2.14812*10^6, 2.15987*10^6}, {2.17164*10^6, 2.1736*10^6, 2.19133*10^6, 2.19726*10^6, 2.20121*10^6, 2.20715*10^6, 2.2131*10^6, 2.23098*10^6, 2.23298*10^6, 2.24295*10^6, 2.25695*10^6, 2.26296*10^6, 2.26698*10^6, 2.26898*10^6, 2.273*10^6, 2.29719*10^6, 2.29921*10^6, 2.31136*10^6, 2.31744*10^6, 2.33371*10^6}, {2.34186*10^6, 2.34799*10^6, 2.35412*10^6, 2.37257*10^6, 2.38903*10^6, 2.39109*10^6, 2.39521*10^6, 2.40141*10^6, 2.40348*10^6, 2.40968*10^6, 2.41589*10^6, 2.42627*10^6, 2.4325*10^6, 2.445*10^6, 2.45752*10^6, 2.47637*10^6, 2.47847*10^6, 2.48477*10^6, 2.48897*10^6, 2.50794*10^6}, {2.51639*10^6, 2.54184*10^6, 2.54609*10^6, 2.54822*10^6, 2.55248*10^6, 2.55887*10^6, 2.56101*10^6, 2.57383*10^6, 2.57811*10^6, 2.59311*10^6, 2.62542*10^6, 2.63623*10^6, 2.64273*10^6, 2.65575*10^6, 2.67098*10^6, 2.67753*10^6, 2.68845*10^6, 2.70158*10^6, 2.70377*10^6, 2.70816*10^6}, {2.71474*10^6, 2.72354*10^6, 2.73014*10^6, 2.74117*10^6, 2.74338*10^6, 2.7478*10^6, 2.76329*10^6, 2.76994*10^6, 2.77661*10^6, 2.78105*10^6, 2.78772*10^6, 2.78995*10^6, 2.8011*10^6, 2.80333*10^6, 2.82122*10^6, 2.83467*10^6, 2.84366*10^6, 2.86393*10^6, 2.86844*10^6, 2.87522*10^6}, {2.8888*10^6, 2.89107*10^6, 2.89788*10^6, 2.90469*10^6, 2.91151*10^6, 2.94345*10^6, 2.95032*10^6, 2.96637*10^6, 2.97096*10^6, 2.98016*10^6, 2.99168*10^6, 3.00091*10^6, 3.01479*10^6, 3.03566*10^6, 3.04031*10^6, 3.04263*10^6, 3.04729*10^6, 3.07528*10^6, 3.08933*10^6, 3.09636*10^6}, {3.09871*10^6, 3.11751*10^6, 3.12458*10^6, 3.13165*10^6, 3.14819*10^6, 3.16003*10^6, 3.17665*10^6, 3.1814*10^6, 3.21717*10^6, 3.22435*10^6, 3.23154*10^6, 3.23873*10^6, 3.24834*10^6, 3.25555*10^6, 3.26037*10^6, 3.26277*10^6, 3.27724*10^6, 3.28448*10^6, 3.28932*10^6, 3.29174*10^6}, {3.299*10^6, 3.32569*10^6, 3.33299*10^6, 3.33543*10^6, 3.3403*10^6, 3.36227*10^6, 3.36471*10^6, 3.3696*10^6, 3.38431*10^6, 3.38676*10^6, 3.39412*10^6, 3.39904*10^6, 3.43107*10^6, 3.43848*10^6, 3.4459*10^6, 3.45086*10^6, 3.46077*10^6, 3.47318*10^6, 3.51306*10^6, 3.53308*10^6}, {3.53558*10^6, 3.54311*10^6, 3.54813*10^6, 3.55064*10^6, 3.55567*10^6, 3.55818*10^6, 3.57077*10^6, 3.58843*10^6, 3.59601*10^6, 3.60107*10^6, 3.6112*10^6, 3.62388*10^6, 3.63149*10^6, 3.65695*10^6, 3.66205*10^6, 3.6646*10^6, 3.67226*10^6, 3.71069*10^6, 3.71583*10^6, 3.72612*10^6}, {3.739*10^6, 3.74673*10^6, 3.75448*10^6, 3.76482*10^6, 3.77259*10^6, 3.78814*10^6, 3.79333*10^6, 3.80113*10^6, 3.80373*10^6, 3.81153*10^6, 3.81674*10^6, 3.82456*10^6, 3.82717*10^6, 3.84022*10^6, 3.84283*10^6, 3.86377*10^6, 3.87164*10^6, 3.89792*10^6, 3.90319*10^6, 3.91901*10^6}, {3.93751*10^6, 3.97463*10^6, 3.98261*10^6, 4.00926*10^6, 4.01461*10^6, 4.03869*10^6, 4.04941*10^6, 4.05746*10^6, 4.06284*10^6, 4.0709*10^6, 4.08976*10^6, 4.09785*10^6, 4.10595*10^6, 4.11947*10^6, 4.12218*10^6, 4.13572*10^6, 4.15201*10^6, 4.16288*10^6, 4.1765*10^6, 4.17922*10^6}, {4.19286*10^6, 4.20379*10^6, 4.22021*10^6, 4.23392*10^6, 4.2669*10^6, 4.26966*10^6, 4.27517*10^6, 4.2862*10^6, 4.29449*10^6, 4.30002*10^6, 4.31108*10^6, 4.33603*10^6, 4.34993*10^6, 4.35827*10^6, 4.36663*10^6, 4.36942*10^6, 4.37778*10^6, 4.39174*10^6, 4.40852*10^6, 4.41132*10^6}, {4.42534*10^6, 4.43375*10^6, 4.44218*10^6, 4.45062*10^6, 4.46187*10^6, 4.47033*10^6, 4.48443*10^6, 4.49291*10^6, 4.49573*10^6, 4.50422*10^6, 4.51271*10^6, 4.52121*10^6, 4.5354*10^6, 4.54677*10^6, 4.58095*10^6, 4.58951*10^6, 4.62099*10^6, 4.62385*10^6, 4.64969*10^6, 4.65545*10^6}, {4.66696*10^6, 4.68137*10^6, 4.72475*10^6, 4.73635*10^6, 4.7625*10^6, 4.76832*10^6, 4.77123*10^6, 4.7858*10^6, 4.79456*10^6, 4.79748*10^6, 4.80624*10^6, 4.81209*10^6, 4.83845*10^6, 4.85019*10^6, 4.86783*10^6, 4.89434*10^6, 4.91796*10^6, 4.92684*10^6, 4.9298*10^6, 4.94758*10^6}, {4.95648*10^6, 4.97133*10^6, 4.9743*10^6, 4.98918*10^6, 4.99216*10^6, 5.0011*10^6, 5.01602*10^6, 5.03695*10^6, 5.04294*10^6, 5.07893*10^6, 5.08194*10^6, 5.10601*10^6, 5.10902*10^6, 5.1241*10^6, 5.12712*10^6, 5.14223*10^6, 5.17251*10^6, 5.17857*10^6, 5.18161*10^6, 5.18768*10^6}, {5.19984*10^6, 5.22419*10^6, 5.23333*10^6, 5.24249*10^6, 5.24554*10^6, 5.26388*10^6, 5.28838*10^6, 5.30065*10^6, 5.30679*10^6, 5.31601*10^6, 5.36223*10^6, 5.36531*10^6, 5.38077*10^6, 5.38386*10^6, 5.39315*10^6, 5.39934*10^6, 5.40864*10^6, 5.41795*10^6, 5.43037*10^6, 5.43969*10^6}, {5.44591*10^6, 5.4646*10^6, 5.47395*10^6, 5.48644*10^6, 5.50519*10^6, 5.51145*10^6, 5.53338*10^6, 5.55222*10^6, 5.56794*10^6, 5.60576*10^6, 5.61523*10^6, 5.63421*10^6, 5.6437*10^6, 5.64687*10^6, 5.68178*10^6, 5.6945*10^6, 5.72317*10^6, 5.73913*10^6, 5.74872*10^6, 5.77112*10^6}, {5.77752*10^6, 5.78073*10^6, 5.79035*10^6, 5.8064*10^6, 5.81926*10^6, 5.82892*10^6, 5.83536*10^6, 5.84502*10^6, 5.89348*10^6, 5.91616*10^6, 5.93238*10^6, 5.93563*10^6, 5.95514*10^6, 5.97142*10^6, 5.97467*10^6, 6.00078*10^6, 6.00404*10^6, 6.03348*10^6, 6.07285*10^6, 6.10246*10^6}, {6.11234*10^6, 6.13874*10^6, 6.16851*10^6, 6.17845*10^6, 6.18176*10^6, 6.21163*10^6, 6.21828*10^6, 6.22826*10^6, 6.23159*10^6, 6.24824*10^6, 6.26158*10^6, 6.27827*10^6, 6.2883*10^6, 6.29833*10^6, 6.31173*10^6, 6.31843*10^6, 6.32849*10^6, 6.33184*10^6, 6.34863*10^6, 6.35199*10^6}, {6.37217*10^6, 6.3789*10^6, 6.38901*10^6, 6.39912*10^6, 6.40249*10^6, 6.42275*10^6, 6.42951*10^6, 6.4532*10^6, 6.48372*10^6, 6.49051*10^6, 6.50071*10^6, 6.53475*10^6, 6.54156*10^6, 6.55521*10^6, 6.56546*10^6, 6.57229*10^6, 6.58597*10^6, 6.59282*10^6, 6.6168*10^6, 6.6271*10^6}, {6.63396*10^6, 6.65802*10^6, 6.67868*10^6, 6.68558*10^6, 6.68902*10^6, 6.74085*10^6, 6.74778*10^6, 6.7894*10^6, 6.79983*10^6, 6.81026*10^6, 6.83116*10^6, 6.85208*10^6, 6.87653*10^6, 6.88703*10^6, 6.89403*10^6, 6.89753*10^6, 6.90453*10^6, 6.9361*10^6, 6.94664*10^6, 6.96774*10^6}} PrimePattern20220416SFN.nb
Trurl Posted June 23, 2022 Author Posted June 23, 2022 I know no one believes me. But this is proof of the Pappy Craylar Conjecture. It is attached in PDF format, because I had to highlight some numbers. Notice how the error of 3 equals 3*7=24 and notice how 11 does the same. The position of the Prime numbers in the first 1000 Prime numbers corresponds to the position on the equation. In other words, 3 is in the second position on the set of numbers and 11 is the fifth position. The test Primes are in the order that the Prime numbers occur. I have highlighted the numbers that represent the equations. I know the equations are difficult to read in standard form, however these are the same equations I have been using. So I challenge you do download the attached PDF. 20220622ProofSFN.pdf
Trurl Posted July 30, 2022 Author Posted July 30, 2022 I have attached a PDF to view. I know it could be formatted more clearly. But if the Pappy Craylar Hypothesis is true: We can verify a number is Prime by multiplying it by a known Prime number and see if a Semi-Prime results. And we may be able to take a known Prime and see which consecutive number will result in a Semi-Prime, thus establishing a pattern. This pattern is seen in the PDF I posted by taking the error of the equation when (p^4 / ((p*Data)^2 + p)). I know it is hard to see in my PDF. I’m working to make it easier to read. I have been reading a book that said if there is a pattern in Prime numbers the Riemann Hypothesis is false. And if Prime numbers are completely random the Riemann Hypothesis is true. But the question is do you have a pattern if you can predict where the next Prime number occurs? I ask this because there may be a computation to find the next Prime number, but the overall placement of all Prime numbers may be arbitrary. @studiot : This is what I was describing in my status update. 20220622ProofSFN.pdf
Trurl Posted September 21, 2022 Author Posted September 21, 2022 This picture sums up my work. If you wonder why I put so much effort and posted so much about this problem, it is because the application of this problem. This is several problems and techniques. Every post has been to address something in the breaking of RSA. Now the problem is applied to Prime numbers and their distribution. If you graph the equation, Prime numbers will occur around zero. Any known Prime number multiplied by test value should result in zero when the test number is also a Prime number. If you graph the equation of the Pappy Craylar conjecture and graph the inverse of this graph, it may very well be that it is a Tracy-Widom distribution. There are many applications. I only list some new ones here. I once stated back in 2006 that a logarithmic spiral could be used to represent Prime numbers. I still believe that even though how original that idea may be. I see the graph as a resonating circular function. This circular function would increase in value but with harmonics that occasionally dampen it. If the equation does not convince you I completely understand. I must find the ultimate proof by breaking RSA. Breaking it will improve my programming skills. If you wonder why I did not just do that at the start. The fact remains I have the math, but crunching the numbers takes considerable programming skills. But the RSA numbers are still available, even though, the prize money for solving them has expired.
Ghideon Posted September 22, 2022 Posted September 22, 2022 22 hours ago, Trurl said: breaking of RSA Triggers my curiosity. Reading first line, "where pnp..." it is a contradiction. (Note: can't quote a picture) Ok, nothing new since early 2021: On 2/25/2021 at 2:38 AM, Trurl said: N=85 x=5 y=17
Trurl Posted September 23, 2022 Author Posted September 23, 2022 You are correct. I haven’t changed the equation. The semiprime is still pnp. But notice that pnp is known and does not change. Test 5, pnp equals 85. Test 11, pnp is still 85. It should only be true when x equals the smaller factor of pnp. My hypothesis is if we can factor a semiprime you can predict and find higher value Primes where x the smaller Prime factor forms another semiprime. So 3 * 5 make semiprime 15 and 3 * 7 make semiprime 21. I show a pattern in the table of values in the previous post. I show the error in the first 1000 Prime numbers. I believe if you graph the equation knowing x and finding a pnp (which is x*y), where the graph equals zero then y is Prime. I don’t understand how the Riemann hypothesis finds Prime numbers. Finding zeroes either proves or disproves it, but why cannot we have a pattern of Primes before it is proved? If the zeta function minus the values at zero in the Riemann hypotheses fits the logarithm function to match the Prime number distribution, I wonder how the Pappy Craylar conjecture finds zeros. The PC conjecture has the error of the equation. But the PC conjecture is not a line but a modified circular function. The past 2 posts before the current posts where I listed a bunch of numbers is a pattern. There are 2 equations I offer as a proof as a pattern. I have shared the Pappy Craylar conjecture with as many people that I could. One person is an engineer, but says he isn’t schooled in number theory. I posted the new post, just to reiterate that it is just the simplest of equations. I never got a chance to get a doctoral degree. However, this is my dissertation. That is why I put so much effort in it and why I work so hard to prove it.
Ghideon Posted September 23, 2022 Posted September 23, 2022 Extract from your picture: It says x is semiprime.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now