Jump to content

Recommended Posts

Posted (edited)

Глава заключительная.
" Код Создателя!"

Начало обсуждения находится здесь. The discussion starts here. : https://forum.belastro.net/viewtopic.php?t=2844&postdays=0&postorder=asc&start=0

English version of "Proof of the Hypothesis of Large Dirac Numbers or How to Weight the Universe?":   https://www.academia.edu/36630302/Proof_of_the_Hypothesis_of_Large_Dirac_Numbers_or_How_to_Weight_the_Universe

Русская версия "Доказательство гипотезы Больших Чисел ДИРАКА: https://www.academia.edu/50355159/Доказательство_гипотезы_Больших_Чисел_Дирака_или_как_взвесить_Вселенную

English version of "Mercury anomaly and Milgrom's constant.":  https://www.academia.edu/50353387/Mercury_anomaly_and_Milgroms_constant
Русская версия "
Аномалия Меркурия и константа Милгрома.": https://www.academia.edu/50354111/Аномалия_Меркурия_и_константа_Милгрома
В качестве интриги загружу один лист. Один из стопки.
Иногда достаточно одного взгляда, чтобы всё понять. Постараюсь в кратчайшие сроки написать эту главу здесь с подробными разъяснениями. Как я и говорил много лет тому назад, Вселенная описывается единственным уравнением. 
"Господь не играет в кости, за то обожает степенные ряды!" Цитата самого себя из 2014 года.

As an intrigue, I will upload one sheet. One of the stack.
Sometimes one glance is enough to understand everything. I will try to write this chapter here with detailed explanations as soon as possible. As I said many years ago, the universe is described by a single equation.
"The Lord does not play dice, for that he loves power ranks!" Quote myself from 2014.

code_of_god_135.jpg

На определенном этапе строительства вселенной из кирпичей, поиска законов определяющих вид нашей всленной, я столкнулся с проблемой размерностей. Перелистывая средневековый справочник по физике и пытаясь увидеть взаимосвязи из разных разделов физики, я пришел к выводу, что система размерностей СИ разбивает физику на отдельные разделы, которые перестают дружить между собой. Пример тому электрический ток, имеющий размерность ампер и не не дружащий в явной форме с классической механикой и ее размерностями. Физики разобрали физику на части и каждый ковырялся в своем разделе. Поэтому я потратил некоторое большое время на устранение этого недостатка и переводе нужных мне велечин к единой размерности LMT - метр, килограмм, секунда. Т.е. к механической системе или Гаусса. К примеру, заряд измеряемый в Кулонах абсолютно не дружит с метрами или килограммами. Или дружит условно. Но если поднапрячься, то его можно привести к размерности LMT и тогда он будет иметь размерность.

At a certain stage in the construction of a universe of bricks, in the search for laws that determine the appearance of our universe, I faced the problem of dimensions. Leafing through the medieval reference book on physics and trying to see the relationships from different branches of physics, I came to the conclusion that the SI system of dimensions breaks physics into separate sections that are no longer friends with each other. An example of this is an electric current that has the dimension of amperes and is not explicitly friendly with classical mechanics and its dimensions. Physicists disassembled physics into parts and each was poking around in its own section. Therefore, I spent some great time eliminating this deficiency and converting the quantities I needed to a single LMT dimension - meter, kilogram, second. Those. to a mechanical system or Gaussian. For example, the charge measured in coulomb is absolutely not on friendly terms with meters or kilograms. Or conditionally friends. But if you strain, then it can be reduced to the LMT dimension and then it will have the dimension.

 

 

 

Edited by Aeromash
  • Aeromash changed the title to Доказательство гипотезы Больших Чисел Дирака. Proof of the Hypothesis of Large Dirac Numbers.
Posted

On this forum, they communicate in English, take the trouble to make a translation. With the help of Yandex-Translator, it will take a couple of minutes https://translate.yandex.ru

( На этом форуме общаются на английском языке, потрудитесь сделать перевод. С помощью Яндекс-Переводчика это займет пару минут https://translate.yandex.ru)

Posted
23 minutes ago, SergUpstart said:

On this forum, they communicate in English, take the trouble to make a translation. With the help of Yandex-Translator, it will take a couple of minutes https://translate.yandex.ru

( На этом форуме общаются на английском языке, потрудитесь сделать перевод. С помощью Яндекс-Переводчика это займет пару минут https://translate.yandex.ru)

Thank you also, +1

If this translator is any good (better than google) it might come in handy one day.

:)

Posted (edited)

Test write  tex math :

[tex] \frac{kg\cdot m^3}{s^2}  [/tex]

Wrong!

[math]\frac{{kg\cdot{m^3}}}{{{s^2}}}[/math]

 

Edited by Aeromash
Posted (edited)
7 minutes ago, Aeromash said:

[tex] \frac{kg\cdot m^3}{s^2}  [/tex]

[tex] \frac{kg\cdot m^3}{s^2}  [/tex]

 


[math]\frac{{kg\cdot{m^3}}}{{{s^2}}}[/math]

 

[math]\frac{{kg\cdot{m^3}}}{{{s^2}}}[/math]

 

 

 

 

Edited by studiot
Posted (edited)

На определенном этапе строительства вселенной из кирпичей, поиска законов определяющих вид нашей всленной, я столкнулся с проблемой размерностей. Перелистывая средневековый справочник по физике и пытаясь увидеть взаимосвязи из разных разделов физики, я пришел к выводу, что система размерностей СИ разбивает физику на отдельные разделы, которые перестают дружить между собой. Пример тому электрический ток, имеющий размерность ампер и не не дружащий в явной форме с классической механикой и ее размерностями. Физики разобрали физику на части и каждый ковырялся в своем разделе. Поэтому я потратил некоторое большое время на устранение этого недостатка и переводе нужных мне велечин к единой размерности LMT - метр, килограмм, секунда. Т.е. к механической системе или Гаусса. К примеру, заряд измеряемый в Кулонах абсолютно не дружит с метрами или килограммами. Или дружит условно. Но если поднапрячься, то его можно привести к размерности LMT и тогда он будет иметь размерность.

At a certain stage in the construction of a universe of bricks, in the search for laws that determine the appearance of our universe, I faced the problem of dimensions. Leafing through the medieval reference book on physics and trying to see the relationships from different branches of physics, I came to the conclusion that the SI system of dimensions breaks physics into separate sections that are no longer friends with each other. An example of this is an electric current that has the dimension of amperes and is not explicitly friendly with classical mechanics and its dimensions. Physicists disassembled physics into parts and each was poking around in its own section. Therefore, I spent some great time eliminating this deficiency and converting the quantities I needed to a single LMT dimension - meter, kilogram, second. Those. to a mechanical system or Gaussian. For example, the charge measured in coulomb is absolutely not on friendly terms with meters or kilograms. Or conditionally friends. But if you strain, then it can be reduced to the LMT dimension and then it will have the dimension.

[math]\frac{{kg\cdot{m^3}}}{{{s^2}}}[/math]

Сведя таким образом все к LMT с трудом, но можно заметить некоторые тенденции и зависимости, что и помогло мне увидеть взаимосвязь у фундаметальных констант.
К примеру квадрат скорости света имеет размерность:

Reducing everything to LMT in this way is difficult, but you can see some trends and dependencies, which helped me see the relationship between fundamental constants.
For example, the square of the speed of light has the dimensions:

[math]\frac{m^2}{s^2}[/math]

Константа Милгрома имеет размерность:
Milgrom's constant has the dimension:

[math]\frac{m^1}{s^2}[/math]

The square of the Hubble constant has the dimension:

Квадрат константы Хаббла имеет размерность:

[math]\frac{m^0}{s^2}[/math]

Выше константы скорость света просится зарядовая константа:

Above the constant, the speed of light requires a charge constant:

[math]\frac{m^3}{s^2}[/math]

В общем виде произвольная фундаментальная константа имеет размерность:

In general, an arbitrary fundamental constant has the dimension:

[math]\frac{m^n}{s^2}[/math]

Этого уже достаточно, чтобы достаточно быстро вывести закон связывающий между собой константы. Любая контсанта домноженная на массу, дает нам некоторую физическую величину или определенное свойство тела массой m.
К примеру квадрат скорости света домноженный на пробную массу m дает нам "внутренюю энергию покоя" пробного тела массой m или энергию взаимодействия тела массы m со всей массой Вселенной:

This is already enough to quickly deduce the law connecting the constants. Any contrasanta multiplied by mass gives us some physical quantity or a certain property of a body of mass m.
For example, the square of the speed of light multiplied by the test mass m gives us the "internal rest energy" of a test body of mass m or the interaction energy of a body of mass m with the entire mass of the Universe:

[math]E=mc^2 \{ \frac{kg \cdot m^2}{s^2} \}[/math]

Константа Милгрома домноженная на массу m дает нам силу взаимодествия тела массы m со всей массой Вселенной:

Milgrom's constant multiplied by mass m gives us the force of interaction of a body of mass m with the entire mass of the Universe:

[math]F=ma \{ \frac{kg \cdot m^1}{s^2} \}[/math]

Квадрат константы Хаббла дает соответсвенно дает некоторое физическое свойство тела, смысл которого еще не ясен, по размерности совпадает с rot E в уравнениях Максвела:

The square of the Hubble constant gives, respectively, a certain physical property of the body, the meaning of which is not yet clear, coincides in dimension with curl E in Maxwell's equations:

[math]K=mH^2 \{ \frac{kg \cdot m^0}{s^2} \}[/math]

Результатом этих наблюдений стало написание книги и обнаружение многих интересных законов описывающих динамику галактик , скоплений и не только их.

The result of these observations was the writing of a book and the discovery of many interesting laws describing the dynamics of galaxies, clusters and not only them.

Таким образом, упрощение системы размерностей увеличивает прозрачность физики.
О чем я давно подозревал, но все руки не доходили сделать очередной рывок. Переход в систему LT или метр, секунда. Масса тоже, как и заряд в Кулонах - какя-то подозрительная, обособленная величина величина. Надо бы от нее избавится!
Продолжение следует.....

Thus, simplifying the system of dimensions increases the transparency of physics.
Which I had suspected for a long time, but all hands did not reach to make another leap. Transition to LT or meter system, second. Mass, like the charge in pendants, is some kind of suspicious, isolated value. We ought to get rid of her!
To be continued.....

 

 

 

Edited by Aeromash
Posted
50 minutes ago, Aeromash said:

At a certain stage in the construction of a universe of bricks, in the search for laws that determine the appearance of our universe, I faced the problem of dimensions. Leafing through the medieval reference book on physics and trying to see the relationships from different branches of physics, I came to the conclusion that the SI system of dimensions breaks physics into separate sections that are no longer friends with each other. An example of this is an electric current that has the dimension of amperes and is not explicitly friendly with classical mechanics and its dimensions. Physicists disassembled physics into parts and each was poking around in its own section. Therefore, I spent some great time eliminating this deficiency and converting the quantities I needed to a single LMT dimension - meter, kilogram, second. Those. to a mechanical system or Gaussian. For example, the charge measured in coulomb is absolutely not on friendly terms with meters or kilograms. Or conditionally friends. But if you strain, then it can be reduced to the LMT dimension and then it will have the dimension.

Do you not think Physicists would be delighted if this goal was achievable?

Do you not think this has not already been attempted ?

45 minutes ago, swansont said:

I have two fundamental charges a micron apart.

Please solve for the force between them using only length, mass and time.

I would be interested in your calculation of the temperature of these two charges that swansont asks about.

 

 

Posted (edited)

Thanks for your question and interest in this topic. I just started to present the topic on this forum, it is difficult to translate the text and formulas. I haven't finished writing yet. I will definitely answer all your questions. Physicists would be happy. 

Long ago my father bought me a telescope. Since then, my passion for physics and astronomy began. For many years I have been asking myself what is hidden by the equation E = mc². I was building different universes in my mind. Built universes big and small. I wrote down all the results in a notebook. In the end, I got tired of building the universe and I put the notebook in the closet. And then one day I watched the scientific film "Anisotropic World". In this film, one professor said the phrase: "We still do not know why the mass of a galaxy is proportional to the fourth power of its rotation speed!" I took a notebook out of the closet and read in it: "Thus, the mass of the galaxy is equal to the fourth power of its rotation speed ...." Then I realized that the universe that I had invented was the real universe! That's what came out of it. I wrote a book that you can read here. In addition, I wrote an article in which I calculate the Milgrom constant and the Hubble constant from the anomalous displacement of the perihelion of Mercury. I am pleased to provide you with my work.  I managed to find an analytical solution to the MOND theory and to prove the Dirac  Large Numbers hypothesis. But this is not the main goal. The main goal is to find a single equation that describes the entire Universe.

And such an equation has been found.

Edited by Aeromash
Posted
58 minutes ago, Aeromash said:

For many years I have been asking myself what is hidden by the equation E = mc².

Please note this is not the complete equation.

This is


[math]{E^2} = {\left( {m{c^2}} \right)^2} + p{c^2}[/math]

 

1 hour ago, Aeromash said:

The main goal is to find a single equation that describes the entire Universe.

And such an equation has been found.

I await the derivation of this with interest.

 

However I am not a cosmologist so cannot verify your other statements.

Hopefully those more interested in that subject will come forward with answers.

Posted (edited)

Dirac a little earlier than I noticed that the ratio of the mass of the smallest particle in the Universe to the mass of the Universe gives the same order of magnitude as the ratio of the squares of their radii. To be precise, the roots of the mass ratios give the same order as the ratio of the radii. Those.:

 [math]\frac {\sqrt{m}}{\sqrt{M_{u}}}=\frac{r}{R_{u}}[/math]

Edited by Aeromash
Posted (edited)
1 hour ago, Aeromash said:

The main goal is to find a single equation that describes the entire Universe.

It was Hawking's dream.

From my point of view, the main formula of physics is not E=mc^2, but

\Delta E \Delta t \geqslant \frac{\hbar}{2}

Edited by SergUpstart
Posted (edited)
22 minutes ago, Aeromash said:

Dirac a little earlier than I noticed that the ratio of the mass of the smallest particle in the Universe to the mass of the Universe gives the same order of magnitude as the ratio of the squares of their radii. To be precise, the roots of the mass ratios give the same order as the ratio of the radii. Those.:

[math] \frac {\sqrt{m}}{\sqrt{M_{u}}}=\frac{r}{R_{u}} [/math]


[math]\frac{{\sqrt m }}{{\sqrt {{M_u}} }} = \frac{r}{{{R_u}}}[/math]

There should be no space between [math] and \frac

 

 

Edited by studiot
Posted
31 minutes ago, studiot said:

[math]{E^2} = {\left( {m{c^2}} \right)^2} + p{c^2}[/math]

Thank you for your comment, but the formula you indicated belongs to Einstein's theory of gravity, which on the scale of galaxies gives an error in mass of about 25%, and on the scale of the Universe the error is 70%.

9 minutes ago, studiot said:

There should be no space between [math] and \frac

It did not help.

43 minutes ago, studiot said:

I await the derivation of this with interest.

You will be amazed at the simplicity of this formula. The one who created our universe was a genius.

40 minutes ago, SergUpstart said:

\Delta E \Delta t \geqslant \frac{\hbar}{2}

This formula does not describe everything.

36 minutes ago, studiot said:

[math]\frac{{\sqrt m }}{{\sqrt {{M_u}} }} = \frac{r}{{{R_u}}}[/math]

There should be no space between [math] and \frac

I removed the space, but it didn't help.

Posted (edited)


[math][math]\frac{{\sqrt m }}{{\sqrt {{M_u}} }} = \frac{r}{{{R_u}}}[/math][/math]

The parser in this forum doesn't like one or both of your square brackets for some reason.

This is what I saw when pasted your original into a proper parser.

 

mathml1.jpg.bc0828e663930d700ceaffa9bc02eb62.jpg

When I pasted it back into the forum it added another set of math tags.

mathml2.jpg.d167f286987c08f8773371a84134d272.jpg

I am not sure why.
So I removed one set of them in the forum.

 

Edited by studiot
Posted

I briefly read the text that is indicated by the link in the first post of this topic. What I would like to note is that there is no mention of the costant alpha=1/137 in the text, and this is the most important physical constant.

Posted (edited)

Дирак чуть раньше чем я заметил, что отношение массы самой мелкой частицы во Вселенной к массе Вселенной дает такое же по порядку число, что и отношение квадратов их радиусов. Если быть точным, то корни отношений масс дают тот же порядок, что и отношение радиусов. Т.е.:

Dirac a little earlier than I noticed that the ratio of the mass of the smallest particle in the Universe to the mass of the Universe gives the same order of magnitude as the ratio of the squares of their radii. To be precise, the roots of the mass ratios give the same order as the ratio of the radii. Those.:

 [math]\frac {\sqrt{m}}{\sqrt{M_{u}}}=\frac{r}{R_{u}}[/math]

or so

[math]\frac {m}{M_{u}}=\frac{r^2}{R_{u}^2}[/math]

Я же, путем построения собственной вселенной получил выражение:

I, by building my own universe, received the expression:

[math]\frac {m}{M_{u}}=\frac{r^2}{R_{u}^2}=\frac{v^4}{c^4}[/math]

И уже после публикации книги:

And after the publication of the book:

[math]\frac{1}{D_{m}}=\frac {m}{M_{u}}=\frac{r^2}{R_{u}^2}=\frac{v^4}{c^4}=z^4[/math]

Где Dm - большое число Дирака, показывающее какое число объектов массы m или радиуса r может содержаться во вселенной. z -классическое космологическое красное смещение, Mu- масса Вселенной, Ru- радиус Вселенной, m - масса гравитационно связанного объекта, r - его гравитационный радиус, v - линейная скорость его движения, вращения.
Продолжение следует....

Where Dm is a large Dirac number, showing how many objects of mass m or radius r can be contained in the universe. z is the classical cosmological redshift, Mu is the mass of the Universe, Ru is the radius of the Universe, m is the mass of a gravitationally bound object, r is its gravitational radius, v is the linear velocity of its motion or rotation.
To be continued ......

Edited by Aeromash
Posted
14 minutes ago, Aeromash said:

Dirac a little earlier than I noticed that the ratio of the mass of the smallest particle in the Universe to the mass of the Universe gives the same order of magnitude as the ratio of the squares of their radii. To be precise, the roots of the mass ratios give the same order as the ratio of the radii. Those.:

What do you think is the smallest particle and what is its radius???

Posted

I do not know what's happening. But it doesn't work again. I will try to find another way to insert formulas.

15 minutes ago, SergUpstart said:

What do you think is the smallest particle and what is its radius???

Dirac meant the electron. But as it turned out, Dirac's formula works on any scale.

Posted
1 hour ago, Aeromash said:

Thank you for your comment, but the formula you indicated belongs to Einstein's theory of gravity

E=mc2 for a particle at rest was derived years before GR was developed. The energy-momentum equation was derived by Dirac in 1928

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.