Dhamnekar Win,odd Posted September 27, 2022 Posted September 27, 2022 (edited) A circular target of unit radius is divided into four annular zones with outer radii 1/4, 1 /2, 3/4, and I, respectively. Suppose 10 shots are fired independently and at random into the target. (a) Compute the probability that at most three shots land in the zone bounded by the circles of radius 1 /2 and radius 1. (b) If 5 shots land inside the disk of radius 1 /2, find the probability that at least one is in the disk of radius 1 /4. My answers:(a) [math] \displaystyle\sum_{k=0}^{3}\binom{10}{k}(\frac34)^k (\frac14)^{10-k}[/math] (b)[math] \frac{\displaystyle\sum_{k=1}^{5}\binom{5}{k}(\frac{1}{16})^k(\frac{3}{16})^{5-k}}{\binom{10}{5}(\frac14)^5(\frac34)^5}=1.275e-2[/math] My answer to (a) is correct. Author's answer for (b) is [math] 1- (\frac34)^5[/math] Whose answer is correct? My answer for (b) or author's answer for (b)? Edited September 27, 2022 by Dhamnekar Win,odd Latex not working
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now