Jump to content

Recommended Posts

Posted (edited)

SU(2)

\[{\small\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline Field & \ell_L& \ell_R &v_L&U_L&d_L&U_R &D_R&\phi^+&\phi^0\\\hline T_3&- \frac{1}{2}&0&\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}&0&0&\frac{1}{2}&-\frac{1}{2} \\\hline Y&-\frac{1}{2}&-1&-\frac{1}{2}&\frac{1}{6}&\frac{1}{6}& \frac{2}{3}&-\frac{1}{3}&\frac{1}{2}&\frac{1}{2}\\\hline Q&-1&-1&0&\frac{2}{3}&-\frac{1}{3}&\frac{2}{3}&-\frac{1}{3}&1&0\\\hline\end{array}}\]

\(\psi_L\) doublet

\[D_\mu\psi_L=[\partial_\mu-i\frac{g}{\sqrt{2}}(\tau^+W_\mu^+\tau^-W_\mu^-)-i\frac{g}{2}\tau^3W^3_\mu+i\acute{g}YB_\mu]\psi_L=\]\[\partial_\mu-i\frac{g}{\sqrt{2}}(\tau^+W_\mu^-)+ieQA_\mu-i\frac{g}{cos\theta_W}(\frac{t_3}{2}-Qsin^2\theta_W)Z_\mu]\psi_L\]

\(\psi_R\) singlet

\[D_\mu\psi_R=[\partial\mu+i\acute{g}YB_\mu]\psi_R=\partial_\mu+ieQA_\mu+i\frac{g}{cos\theta_W}Qsin^2\theta_WZ_\mu]\psi_W\]

 with \[\tau\pm=i\frac{\tau_1\pm\tau_2}{2}\] and charge operator defined as

\[Q=\begin{pmatrix}\frac{1}{2}+Y&0\\0&-\frac{1}{2}+Y\end{pmatrix}\]

\[e=g.sin\theta_W=g.cos\theta_W\]

\[W_\mu\pm=\frac{W^1_\mu\pm iW_\mu^2}{\sqrt{2}}\]

\[V_{ckm}=V^\dagger_{\mu L} V_{dL}\]

The gauge group of electroweak interactions is 

\[SU(2)_L\otimes U(1)_Y\] where left handed quarks are in doublets of \[ SU(2)_L\] while right handed quarks are in singlets

the electroweak interaction is given by the Langrangian

\[\mathcal{L}=-\frac{1}{4}W^a_{\mu\nu}W^{\mu\nu}_a-\frac{1}{4}B_{\mu\nu}B^{\mu\nu}+\overline{\Psi}i\gamma_\mu D^\mu \Psi\]

where \[W^{1,2,3},B_\mu\] are the four spin 1 boson fields associated to the generators of the gauge transformation \[\Psi\]

The 3 generators of the \[SU(2)_L\] transformation are the three isospin operator components \[t^a=\frac{1}{2} \tau^a \] with \[\tau^a \] being the Pauli matrix and the generator of \[U(1)_\gamma\] being the weak hypercharge operator. The weak isospin "I" and hyper charge \[\gamma\] are related to the electric charge Q and given as

\[Q+I^3+\frac{\gamma}{2}\]

with quarks and lepton fields organized in left-handed doublets and right-handed singlets: 

the covariant derivative is given as

\[D^\mu=\partial_\mu+igW_\mu\frac{\tau}{2}-\frac{i\acute{g}}{2}B_\mu\]

\[\begin{pmatrix}V_\ell\\\ell\end{pmatrix}_L,\ell_R,\begin{pmatrix}u\\d\end{pmatrix}_,u_R,d_R\]

The mass eugenstates given by the Weinberg angles are

\[W\pm_\mu=\sqrt{\frac{1}{2}}(W^1_\mu\mp i W_\mu^2)\]

with the photon and Z boson given as

\[A_\mu=B\mu cos\theta_W+W^3_\mu sin\theta_W\]

\[Z_\mu=B\mu sin\theta_W+W^3_\mu cos\theta_W\]

the mass mixings are given by the CKM matrix below

\[\begin{pmatrix}\acute{d}\\\acute{s}\\\acute{b}\end{pmatrix}\begin{pmatrix}V_{ud}&V_{us}&V_{ub}\\V_{cd}&V_{cs}&V_{cb}\\V_{td}&V_{ts}&V_{tb}\end{pmatrix}\begin{pmatrix}d\\s\\b\end{pmatrix}\]

mass euqenstates given by \(A_\mu\) an \(Z_\mu\)

\[W^3_\mu=Z_\mu cos\theta_W+A_\mu sin\theta_W\]

\[B_\mu= Z_\mu sin\theta_W+A_\mu cos\theta_W\]

\[Z_\mu=W^3_\mu cos\theta_W+B_\mu sin\theta_W\]

\[A_\mu=-W^3_\mu\sin\theta_W+B_\mu cos\theta_W\]

ghost field given by

\[\acute{\psi}=e^{iY\alpha_Y}\psi\]

\[\acute{B}_\mu=B_\mu-\frac{1}{\acute{g}}\partial_\mu\alpha Y\]

 

 [latex]D_\mu[/latex] minimally coupled gauge covariant derivative. h Higg's bosonic field [latex] \chi[/latex] is the Goldstone boson (not shown above) Goldstone no longer applies after spontaneous symmetry breaking [latex]\overline{\psi}[/latex] is the adjoint spinor

[latex]\mathcal{L}_h=|D\mu|^2-\lambda(|h|^2-\frac{v^2}{2})^2[/latex]

[latex]D_\mu=\partial_\mu-ie A_\mu[/latex] where [latex] A_\mu[/latex] is the electromagnetic four potential 

QCD gauge covariant derivative

[latex] D_\mu=\partial_\mu \pm ig_s t_a \mathcal{A}^a_\mu[/latex] matrix A represents each scalar gluon field

 

 

Single Dirac Field

[latex]\mathcal{L}=\overline{\psi}I\gamma^\mu\partial_\mu-m)\psi[/latex]

under U(1) EM fermion field equates to 

[latex]\psi\rightarrow\acute{\psi}=e^{I\alpha(x)Q}\psi[/latex]

due to invariance requirement of the Langrene above and with the last equation leads to the gauge field [latex]A_\mu[/latex]

[latex] \partial_\mu[/latex] is replaced by the covariant derivitave

[latex]\partial_\mu\rightarrow D_\mu=\partial_\mu+ieQA_\mu[/latex]

where [latex]A_\mu[/latex] transforms as [latex]A_\mu+\frac{1}{e}\partial_\mu\alpha[/latex]

Single Gauge field U(1)

[latex]\mathcal{L}=\frac{1}{4}F_{\mu\nu}F^{\mu\nu}[/latex]

[latex]F_{\mu\nu}=\partial_\nu A_\mu-\partial_\mu A_\nu[/latex]

add mass which violates local gauge invariance above

[latex]\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^2A_\mu A^\mu[/latex] guage invariance demands photon be massless to repair gauge invariance add a single complex scalar field

[latex]\phi=\frac{1}{\sqrt{2}}(\phi_1+i\phi_2[/latex]

Langrene becomes

[latex] \mathcal{L}=\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+|D_\mu \phi|^2-V_\phi[/latex]

where [latex]D_\mu=\partial_\mu-ieA_\mu[/latex]

[latex]V_\phi=\mu^2|\phi^2|+\lambda(|\phi^2|)^2[/latex]

[latex]\overline{\psi}=\psi^\dagger \gamma^0[/latex] where [latex]\psi^\dagger[/latex] is the hermitean adjoint and [latex]\gamma^0 [/latex] is the timelike gamma matrix

the four contravariant matrix are as follows

[latex]\gamma^0=\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}[/latex]

[latex]\gamma^1=\begin{pmatrix}0&0&0&1\\0&0&1&0\\0&0&-1&0\\-1&0&0&0\end{pmatrix}[/latex]

[latex]\gamma^2=\begin{pmatrix}0&0&0&-i\\0&0&i&0\\0&i&0&0\\-i&0&0&0\end{pmatrix}[/latex]

[latex]\gamma^3=\begin{pmatrix}0&0&1&0\\0&0&0&-1\\-1&0&0&0\\0&1&0&0\end{pmatrix}[/latex]

where [latex] \gamma^0[/latex] is timelike rest are spacelike

V denotes the CKM matrix usage

[latex]\begin{pmatrix}\acute{d}\\\acute{s}\\\acute{b}\end{pmatrix}\begin{pmatrix}V_{ud}&V_{us}&V_{ub}\\V_{cd}&V_{cs}&V_{cb}\\V_{td}&V_{ts}&V_{tb}\end{pmatrix}\begin{pmatrix}d\\s\\b\end{pmatrix}[/latex] 

[latex]V_{ckm}=V^\dagger_{\mu L} V_{dL}[/latex]

the CKM mixing angles correlates the cross section between the mass eigenstates and the weak interaction eigenstates. Involves CP violations and chirality relations.

Dirac 4 component spinor fields

[latex]\gamma^5=i\gamma_0,\gamma_1,\gamma_2,\gamma_3[/latex]

4 component Minkowskii with above 4 component Dirac Spinor and 4 component Dirac gamma matrixes are defined as

[latex] {\gamma^\mu\gamma^\nu}=2g^{\mu\nu}\mathbb{I}[/latex] where [latex]\mathbb{I}[/latex] is the identity matrix. (required under MSSM electroweak symmetry break}

in Chiral basis [latex]\gamma^5[/latex] is diagonal in [latex]2\otimes 2[/latex] the gamma matrixes are

[latex]\begin{pmatrix}0&\sigma^\mu_{\alpha\beta}\\\overline{\sigma^{\mu\dot{\alpha}\beta}}&0\end{pmatrix}[/latex]

[latex]\gamma^5=i{\gamma_0,\gamma_1,\gamma_2,\gamma_3}=\begin{pmatrix}-\delta_\alpha^\beta&0\\0&\delta^\dot{\alpha}_\dot{\beta}\end{pmatrix}[/latex]

[latex]\mathbb{I}=\begin{pmatrix}\delta_\alpha^\beta&0\\0&\delta^\dot{\alpha}_\dot{\beta}\end{pmatrix}[/latex]

Lorentz group identifiers in [latex](\frac{1}{2},0)\otimes(0,\frac{1}{2})[/latex]

[latex]\sigma\frac{I}{4}=(\gamma^\mu\gamma^\nu)=\begin{pmatrix}\sigma^{\mu\nu\beta}_{\alpha}&0\\0&-\sigma^{\mu\nu\dot{\alpha}}_{\dot{\beta}}\end{pmatrix}[/latex]

[latex]\sigma^{\mu\nu}[/latex] duality satisfies [latex]\gamma_5\sigma^{\mu\nu}=\frac{1}{2}I\epsilon^{\mu\nu\rho\tau}\sigma_{\rho\tau}[/latex]

a 4 component Spinor Dirac field is made up of two mass degenerate Dirac spinor fields U(1) helicity 

[latex](\chi_\alpha(x)),(\eta_\beta(x))[/latex]

 

[latex]\psi(x)=\begin{pmatrix}\chi^{\alpha\beta}(x)\\ \eta^{\dagger \dot{\alpha}}(x)\end{pmatrix}[/latex]

the [latex](\alpha\beta)=(\frac{1}{2},0)[/latex] while the [latex](\dot{\alpha}\dot{\beta})=(0,\frac{1}{2})[/latex]

this section relates the SO(4) double cover of the SU(2) gauge requiring the chiral projection operator next.

chiral projections operator

[latex]P_L=\frac{1}{2}(\mathbb{I}-\gamma_5=\begin{pmatrix}\delta_\alpha^\beta&0\\0&0\end{pmatrix}[/latex]

[latex]P_R=\frac{1}{2}(\mathbb{I}+\gamma_5=\begin{pmatrix}0&0\\ 0&\delta^\dot{\alpha}_\dot{\beta}\end{pmatrix}[/latex]

 

Weyl spinors

[latex]\psi_L(x)=P_L\psi(x)=\begin{pmatrix}\chi_\alpha(x)\\0\end{pmatrix}[/latex]

[latex]\psi_R(x)=P_R\psi(x)=\begin{pmatrix}0\\ \eta^{\dagger\dot{a}}(x)\end{pmatrix}[/latex]

 

 

also requires Yukawa couplings...SU(2) matrixes given by

[latex]diag(Y_{u1},Y_{u2},Y_{u3})=diag(Y_u,Y_c,Y_t)=diag(L^t_u,\mathbb{Y}_u,R_u)[/latex]

[latex]diag(Y_{d1},Y_{d2},Y_{d3})=diag(Y_d,Y_s,Y_b)=diag(L^t_d,\mathbb{Y}_d,R_d[/latex]

[latex]diag(Y_{\ell 1},Y_{\ell 2},Y_{\ell3})=diag(Y_e,Y_\mu,Y_\tau)=diag(L^T_\ell,\mathbb{Y}_\ell,R_\ell)[/latex]

the fermion masses

[latex]Y_{ui}=m_{ui}/V_u[/latex]

[latex]Y_{di}=m_{di}/V_d[/latex]

[latex]Y_{\ell i}=m_{\ell i}/V_\ell[/latex]

Reminder notes: Dirac is massive 1/2 fermions, Weyl the massless. Majorona  fermion has its own antiparticle pair while Dirac and Weyl do not.  The RH neutrino would be more massive than the LH neutrino, same for the corresponding LH antineutrino and RH Neutrino via seesaw mechanism which is used with the seesaw mechanism under MSM. Under MSSM with different Higgs/higglets can be numerous seesaws.  The Majorona method has conservation violations also these fermions must be electric charge neutral. (must be antiparticles of themselves) the CKM and PMNS are different mixing angels in distinction from on another. However they operate much the same way. CKM is more commonly used as its better tested to higher precision levels atm.

Quark family is Dirac fermions due to electric charge cannot be its own antiparticle. Same applies to the charged lepton family. Neutrinos are members of the charge neutral lepton family

 

Lorentz group

Lorentz transformations list spherical coordinates (rotation along the z axis through an angle ) \[\theta\]

\[(x^0,x^1,x^2,x^3)=(ct,r,\theta\phi)\]

\[(x_0,x_1,x_2,x_3)=(-ct,r,r^2,\theta,[r^2\sin^2\theta]\phi)\]

 

\[\acute{x}=x\cos\theta+y\sin\theta,,,\acute{y}=-x\sin\theta+y \cos\theta\]

\[\Lambda^\mu_\nu=\begin{pmatrix}1&0&0&0\\0&\cos\theta&\sin\theta&0\\0&\sin\theta&\cos\theta&0\\0&0&0&1\end{pmatrix}\]

generator along z axis

\[k_z=\frac{1\partial\phi}{i\partial\phi}|_{\phi=0}\]

generator of boost along x axis::

\[k_x=\frac{1\partial\phi}{i\partial\phi}|_{\phi=0}=-i\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&0\\0&0&0&0 \end{pmatrix}\]

boost along y axis\

\[k_y=-i\begin{pmatrix}0&0&1&0\\0&0&0&0\\1&0&0&0\\0&0&0&0 \end{pmatrix}\]

generator of boost along z direction

\[k_z=-i\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&0 \end{pmatrix}\]

the above is the generator of boosts below is the generator of rotations.

\[J_z=\frac{1\partial\Lambda}{i\partial\theta}|_{\theta=0}\]

\[J_x=-i\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&0&0&1\\0&0&-1&0 \end{pmatrix}\]

\[J_y=-i\begin{pmatrix}0&0&0&0\\0&0&0&-1\\0&0&1&0\\0&0&0&0 \end{pmatrix}\]

\[J_z=-i\begin{pmatrix}0&0&0&0\\0&0&1&0\\0&-1&0&0\\0&0&0&0 \end{pmatrix}\]

there is the boosts and rotations we will need

and they obey commutations

\[[A,B]=AB-BA\]

SO(3) Rotations list

set x,y,z rotation as

\[\varphi,\Phi\phi\]

\[R_x(\varphi)=\begin{pmatrix}1&0&0\\0&\cos\varphi&\sin\varphi\\o&-sin\varphi&cos\varphi \end{pmatrix}\]

\[R_y(\phi)=\begin{pmatrix}cos\Phi&0&\sin\Phi\\0&1&0\\-sin\Phi&0&cos\Phi\end{pmatrix}\]

\[R_z(\phi)=\begin{pmatrix}cos\theta&sin\theta&0\\-sin\theta&\cos\theta&o\\o&0&1 \end{pmatrix}\]

Generators for each non commutative group.

\[J_x=-i\frac{dR_x}{d\varphi}|_{\varphi=0}=\begin{pmatrix}0&0&0\\0&0&-i\\o&i&0\end{pmatrix}\]

\[J_y=-i\frac{dR_y}{d\Phi}|_{\Phi=0}=\begin{pmatrix}0&0&-i\\0&0&0\\i&i&0\end{pmatrix}\]

\[J_z=-i\frac{dR_z}{d\phi}|_{\phi=0}=\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}\]

with angular momentum operator

\[{J_i,J_J}=i\epsilon_{ijk}J_k\]

with Levi-Civita

 

\[\varepsilon_{123}=\varepsilon_{312}=\varepsilon_{231}=+1\]

\[\varepsilon_{123}=\varepsilon_{321}=\varepsilon_{213}=-1\]

SU(3) generators Gell Mann matrix's

\[\lambda_1=\begin{pmatrix}0&-1&0\\1&0&0\\0&0&0\end{pmatrix}\]

\[\lambda_2=\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}\]

\[\lambda_3=\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}\]

\[\lambda_4=\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix}\]

\[\lambda_5=\begin{pmatrix}0&0&-i\\0&0&0\\i&0&0\end{pmatrix}\]

\[\lambda_6=\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}\]

\[\lambda_7=\begin{pmatrix}0&0&0\\0&0&-i\\0&i&0\end{pmatrix}\]

\[\lambda_8=\frac{1}{\sqrt{3}}\begin{pmatrix}1&0&0\\0&1&0\\0&0&-2\end{pmatrix}\]

commutation relations

\[[\lambda_i\lambda_j]=2i\sum^8_{k=1}f_{ijk}\lambda_k\]

with algebraic structure

\[f_{123}=1,f_{147}=f_{165}=f_{246}=f_{246}=f_{257}=f_{345}=f_{376}=\frac{1}{2},f_{458}=f_{678}=\frac{3}{2}\]

with Casimer Operator

\[\vec{J}^2=J_x^2+J_y^2+j_z^2\]

 

 

Edited by Mordred
Posted (edited)

inflationary gravity waves

Weak field limit transverse , traceless components with \(R_{\mu\nu}=0\)

\[h^\mu_\mu=0\]

\[\partial_\mu h^{\mu\nu}=\partial_\mu h^{\nu\mu}=0\]

\[R_{\mu\nu}=8\pi G_N(T_{\mu\nu}-\frac{1}{2}T^\rho_\rho g_{\mu\nu})\]

vacuum T=0 so \(\square h_{\mu\nu}=0\)

transverse traceless wave equation

\[\nabla^2h-\frac{\partial^2h}{c^2\partial t^2}=\frac{16\pi G_N}{c^4}T\]

inhomogeneous perturbations of the RW metric

\[ds^2=(1+2A)dt^2-2RB_idtdx^i-R^2[(1+2C)\delta_{ij}+\partial_i\partial_j E+h_{ij}]dx^idx^j\]

where A,B,E and C are scalar perturbations while \(h_{ij}\) are the transverse traceless tensor metric perturbations

each tensor mode with wave vector k has two transverse traceless polarizations.

\[h_{ij}(\vec{k})=h_\vec{k} \bar{q}_{ij}+h_\vec{k} \bar{q}_{ij}\]

*+x* polarizations

The linearized Einstein equations then yield the same evolution equation for the amplitude as that for a massless field in RW spacetime.

\[\ddot{h}_\vec{k}+3H\dot{h}_\vec{k}+\frac{k^2}{R^2}h_\vec{k}=0\]

https://pdg.lbl.gov/2018/reviews/rpp2018-rev-inflation.pdf

Edited by Mordred
Posted (edited)

 

A possible antineutrino cross section calculation massless case

\[\vec{v}_e+p\longrightarrow n+e^+\]

Fermi constant=\(1.1663787(6)*10^{-4} GeV^{-2}\)

\[\frac{d\sigma}{d\Omega}=\frac{S|M|^2\acute{p}^2}{M_2|\vec{p_1}|2|\vec{p_1}|(E_1+m_2c^2)-|\vec{p_1}|\prime{E_1}cos\theta}\]

Fermi theory

\[|M|^2=E\acute{E}|M_0^2|=E\acute{E}(M_Pc^2)^2G^2_F\]

\[\frac{d\sigma}{d\Omega}=(\frac{h}{8\pi}^2)\frac{M_pc^4(\acute{E})^2G^3_F}{[(E+M_p^2)-Ecos\theta]}\]

\[\frac{d\sigma}{d\Omega}=(\frac{h}{8\pi}^2)\frac{M_pc^4(\acute{E})^2G^3_F}{M_pc^2}(1+\mathcal{O}(\frac{E}{M_oc^2})\]

\[\sigma=(\frac{\hbar cG_F\acute{E}^2}{8\pi})^2\simeq 10^{-45} cm^2\] \

Edited by Mordred
Posted (edited)

\[\vec{v}_e+p\longrightarrow n+e^+\]

\[\array{ n_e \searrow&&\nearrow n \\&\leadsto &\\p \nearrow && \searrow e^2}\]

Edited by Mordred
Posted (edited)

An electroweak nuclear interaction between an anti-electron neutrino and a proton, producing a positively charged electroweak boson and generating a neutron and a positron. 

[math]\vec{\nu}_e + p^+ \overset{W^+}{\longrightarrow} n^0 + e^+[/math]
[math]\;[/math]
[math]\array{\vec{\nu}_e \searrow && \nearrow n^0 \\ & \overset{W^+}{\leadsto} & \\ p^+ \nearrow && \searrow e^+}[/math]

Any discussions and/or peer reviews about this specific topic thread?

Reference:
Wikipedia - Electroweak Interaction:
https://en.wikipedia.org/wiki/Electroweak_interaction

 

Edited by Orion1
Posted (edited)

nice I wish there was a way to show the propagators better in latex. As there  is two symbols for propagators in the Feymann rules. Wavy line being one the other dotted line (ghost propagators) the problem isn't the horizontal but the diagonals for triple and quartic interactions.

lecture_16.pdf (usp.br)

second link has the ghost propagators

https://arxiv.org/pdf/1209.6213

 

Edited by Mordred
Posted (edited)

Accelerator physics 

Frenet-Serret Frame/coordinates Hamilton form reference

reference 1)

https://arxiv.org/pdf/1502.03238

reference 2) Particle accelerator Physics by Helmut Weidemann third edition

particle trajectory

 

r(z)=ro(z)+δr(z)

define 3 vectors as

ux(z) unit vector to trajectory

uz(Z)=dro(z)dz unit vector || to beam trajectory

 

uy(z)=uz(z)+ux(z)

 "to form an orthogonal coordinate system moving along the trajectory with a reference particle at r0(z) . In beam dynamics we identify the plane defined by vectorsux and uz(z ) as the horizontal plane and the plane orthogonal to it as the vertical plane, parallel to uy . Change in vectors are determined by curvatures "

 

dUz(z)d(z)=kxUz(z)

 

dUy(z)dz=kyUz(z)

k_x and k_y are the curvatures in the horizontal and vertical plane.

gives particle trajectory as

\[r(x,y,z)=r_o(z)+x(z)U_x(z)+y(z)U_y(z)\]

"where\( r_0(z)\) is the location of the coordinate system’s origin (reference particle) and (x,y) are the deviations of a particular particle from \(r0(z)\). The derivative with respect to z is then

\[\frac{d}{dz}r(x,y,z)=\frac{dr_o}{dz}+xz\frac{dU_x(z)}{dz}+\frac{dU_y(z)}{dz}+\acute{x}(z)U_x(z)+\acute{y}(z)U_y(z)\]

\[dr=U_xdx+U_ydy+U_zhdz\]

\[h=1+k_{0x}x+k_{0y}y\]

curvilinear coordinate beam dynamic Langrangian

\[\mathcal{L}=-mc^2\sqrt{1-\frac{1}{c^2}(\dot{x}^2+\dot{y}^2+h^2\dot{z}^2)}+e(\dot{x}A_x+\dot{y}A_y+h\dot{z}A_z)=-e\phi\]

 

reference  2) 1.8O and 1.81

see floquet coordinates below

 

Edited by Mordred
  • 3 weeks later...
Posted (edited)

Cosmological Principle implies

\[d\tau^2=g_{\mu\nu}dx^\mu dx^\nu=dt^2-a^2t{\frac{dr^2}{1-kr^2}+r^2d\theta^2+r^2\sin^2\theta d\varphi^2}\]

the Freidmann equations read

\[(\frac{\dot{a}}{a})^2+\frac{k}{a^2}=\frac{8\pi G}{3}\rho\]

for \[\rho=\sum^i\rho_i=\rho_m+\rho_{rad}+\rho_\Lambda\]

\[2\frac{\ddot{a}}{a}+(\frac{\dot{a}}{a})^2+\frac{k}{a^2}=-8\pi Gp\]

for 

\[p=\sum^ip_i=P_{rad}+p_\Lambda\]

with conservation of the energy momentum stress tensor

\[T^{\mu\nu}_\nu=0\]

\[\dot{p}a^3=\frac{d}{dt}[a^3(\rho+p)]\Rightarrow \frac{d}{dt}(\rho a^3)=-p\frac{d}{dt}a^3\]

\[p=\omega\rho\]

given w=0 \(\rho\propto a^{-3}\) for matter, radiation P=1/3 \(\rho\propto{-3}\), Lambda w=-1.\(p=-\rho\) for k=0

\[H_o^2=\frac{k}a^2_O=\frac{8\pi G}{3}(\rho^0+\rho_{rad}^0\\rho_\Lambda)\]

dividing by \(H^2_0\) and \(P^0_{crit}=\frac{3H^2_0}{8\pi G}\)

gives

\[1=-\frac{k}{h_0^2a^2_0}+\Omega^o_m+\Omega^0_{rad}=\Omega^0_\Lambda\]

\[\Omega_k^0=-\frac{k}{h^2_0a^2_0}\Rightarrow 1=\Omega_k^0+\Omega^0_{rad}+\Omega^0_\Lambda\]

densities can be written as

\[\rho_{rad}=\rho^0_{rad}(\frac{a_o}{a})^4=\frac{3}{8\pi G}H_0^2\Omega^0_{rad}(\frac{a_o}{a})^4\]

\[\Omega_m=\rho^0_m(\frac{a_o}{a})^3=\frac{3}{8\pi G}H_0^2\Omega^0_{rad}(\frac{a_o}{a})^3\]

\[\rho_\Lambda=\rho_\Lambda^0=\frac{3}{8\pi G}H_o^2\Omega^0_\Lambda\]

\[-\frac{k}{a^2}=\overbrace{-\frac{k}{a^2_0H_o^2}}^{\Omega^0_k}H^2_0(\frac{a_o}{a})^2\]

with \(1+z=\frac{a_0}{a}\) densities according to scale factor as functions of redshift.

\[\rho_{rad}=\frac{3}{8\pi g}H^2_o\Omega^0_{rad}(\frac{a_o}{a}^4=\frac{3}{8\pi G}H^2_0\Omega^0_{rad}(1+z)^4\]

\[\rho_m=\frac{3}{8\pi g}H^2_o\Omega^0_m(\frac{a_o}{a}^3=\frac{3}{8\pi G}H^2_0\Omega^0_m(1+z)^3\]

\[\rho_\Lambda=\frac{3}{8\pi G}H_0^2\Omega^0_\Lambda\]

\[H^2=H_o^2[\Omega^2_{rad}(1+z)^4+\Omega_m^0(1+z)^3+\Omega_k^0(1+z)^2+\Omega_\Lambda^0]\]

the Hubble parameter can be written as 

\[H=\frac{d}{dt}ln(\frac{a(t)}{a_0}=\frac{d}{dt}ln(\frac{1}{1+z})=\frac{-1}{1+z}\frac{dz}{dt}\]

look back time given as

\[t=\int^{t(a)}_0\frac{d\acute{a}}{\acute{\dot{a}}}\]

\[\frac{dt}{dz}=H_0^{-1}\frac{-1}{1+z}\frac{1}{[\Omega_{rad}(1+z^4)+\Omega^0_m(1=z0^3+\Omega^0_k(1+z)^2+\Omega_\Lambda^0]^{1/2}}\]

\[t_0-t=h_1\int^z_0\frac{\acute{dz}}{(1+\acute{z})[\Omega^0_{rad}(1+\acute{z})^4+\Omega^0_m(1+\acute{z})^3=\Omega^0_k(1+\acute{z})^2+\Omega^0_\Lambda]^{1/2}}\]

 

 

 

 

 

Edited by Mordred
  • 2 months later...
  • 2 weeks later...
Posted (edited)

Self adjoint ODEs

\[\acute{p_0}(x)=p_1(x)\]

\[\mathcal{L}=\frac{d}{dx}[p_o{x}\frac{d}{dx}]+p_2(x)\]

\[\mathcal{L}u=\acute{(p_o \acute{u})}+p_2u\]

integration by parts

\[\int^b_a=v^\ast(x)\mathcal{L}u(x)dx=\int^b_a[v^\ast\acute{(p_o\acute{u})}+v^\ast p_2 u]dx\]

\[=v\ast p_o\acute{u}]^b_a+\int^b_a[-(v^\ast)p_o\acute{u}+v^\ast p_2 u]dx\]

second integration to be continued.

self reminder of goal 

Dirichlet and Neumann boundary conditions

applicability to Chebyshev differential equation first and second order polynomials. (via Sturm-Luiville)

 

 

Edited by Mordred
Posted (edited)

Christoffels for the FLRW metric in spherical coordinates.

\[ds^2=-c(dt^2)+\frac{a(t)}{1-kr^2}dr^2+a^2(t)r^2 d\theta^2+a^2(t)r^2sin^2d\phi\]

\[g_{\mu\nu}=\begin{pmatrix}-1&0&0&0\\0&\frac{a^2}{1-kr^2}&0&0\\0&0&a^2 r^2&0\\0&0&0&a^2r^2sin^2\theta \end{pmatrix}\]

\[\Gamma^0_{\mu\nu}=\begin{pmatrix}0&0&0&0\\0&\frac{a}{1-(kr^2)}&0&0\\0&0&a^2r^2&0\\0&0&0&a^2r^2sin^2\theta \end{pmatrix}\]

\[\Gamma^1_{\mu\nu}=\begin{pmatrix}0&\frac{\dot{a}}{ca}&0&0\\\frac{\dot{a}}{ca}&\frac{a\dot{a}}{c(1-kr^2)}&0&0\\0&0&\frac{1}{c}a\dot{a}r^2&0\\0&0&0&\frac{1}{c}a\dot{a}sin^2\theta \end{pmatrix}\]

\[\Gamma^2_{\mu\nu}=\begin{pmatrix}0&0&\frac{\dot{a}}{ca}&0\\0&0&\frac{1}{r}&0\\\frac{\dot{a}}{ca}&\frac{1}{r}&0&0\\0&0&0&-sin\theta cos\theta \end{pmatrix}\]

\[\Gamma^3_{\mu\nu}=\begin{pmatrix}0&0&0&\frac{\dot{a}}{ca}\\0&0&0&\frac{1}{r}\\0&0&0&cot\theta\\\frac{\dot{a}}{c}&\frac{1}{r}&cot\theta&0\end{pmatrix}\]

\(\dot{a}\) is the velocity of the scale factor if you see two dots its acceleration in time derivatives. K=curvature term

Newton limit geodesic

\[\frac{d^r}{dt^2}=-c^2\Gamma^1_{00}\]

Christoffel Newton limit

\[\Gamma^1_{00}=\frac{GM}{c^2r^2}\]

Covariant derivative of a vector \(A^\lambda\)

\[\nabla_\mu A^\lambda=\partial_\mu A^\lambda+\Gamma_{\mu\nu}^\lambda A^\nu\]

 

Using above to break down 

Local maximally Symmetric subspace (local Euclid)

from reference

https://www.sissa.it/app/phdsection/OnlineResources/104/Adv.GR-Lect.Notes.pdf

Killing equation

\[\nabla_\mu x_\mu=\nabla_nu x_\mu=0\]

where x is the killing vector and defines an isometry

\[\mathbb{M}=\mathcal{R}\times\sum^3\]

due to symmetries and Corpernicus Principle we can reduce to 2 dimensions for curvature terms Possible curvatures flat, spherical, hyperbolic

\[ds^2=-dt^2+R(t)d\sigma^2\]

\(d\sigma^2\) =space  independent scale factor (a)

\[d\sigma^2=\gamma_{ij}dx^idx^j\]

 

\[d\sigma^2=\frac{d\bar{r}^2}{1-k\bar{r}}^2+\bar{r}^2\Omega^2\]

Using Raychaudhuri equations reference below

setting shear and twist to zero and Raychaudhuri expansion is

\[V=\frac{4}{3}\pi R^3\]

\[R=R(t)=a(t)R_0\]

\[\theta=\lim\limits_{\delta V\rightarrow 0}\frac{1}{V}\frac{\delta V}{\delta\tau}=\frac{1}{\frac{4}{3}\pi 3 R^3}\frac{4}{3}\pi 3 R^2\dot{R}=3\frac{\dot{a}}{a}=3H\]

Raychaudhuri for expansion becomes 

\[\dot{\theta}=-\frac{\theta^2}{3}-R_{\mu\nu}u_\mu u^\nu\]

where \(u^\mu\) is purely time-like

\[3\dot{H}=-3 H^2-R_{00}\Longrightarrow 3\frac{\ddot{a}}{a}=R_{00}\]

\[R_{00}=8\pi G_N(T_{00}-\frac{1}{2}T g_{00})\]

with relations in article below (missing in above reference) and employing last equation becomes

\[\frac{\ddot{a}}{a}=-\frac{4\pi G_N}{3}(\rho+3p)\]

 

https://amslaurea.unibo.it/18755/1/Raychaudhuri.pdf

\[G_{\alpha\beta}=\frac{8\pi G}{c^4}T_{\alpha\beta}\]

\[ds^2=g_{\alpha}{\beta}dx^\alpha dx^\beta\]

\[g_{\alpha\beta}=\begin{pmatrix}1&0&0&0\\0&-\frac{a^2}{1-kr^2}&0&0\\0&0&-a^2r^2&0\\0&0&0&a^2r^2\sin^2\theta\end{pmatrix}\]

with stress tensor components

\[T_{00}=\rho c^2,,,T_{11}=\frac{Pa^2}{1-kr^2}\]

Einstein tensor components

\[G_{00}=3(a)^{-2}(\dot{a}^2+kc^2)\]

\[G_{11}=-c^{-2}(a \ddot{a}+\dot{a}^2+k)(1-kr^2)-1\]

with time evolution of scale factor

\[\frac{a}{a}^2+\frac{kc^2}{a^2}=\frac{8\pi G}{3}G\rho\]

\[2\frac{\ddot{a}}{a}+\frac{\dot{a}}{a}^2+\frac{kc^2}{a^2}=\frac{8\pi}{3}P\]

Edited by Mordred
  • 2 months later...
Posted (edited)

https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/026/25026515.pdf

\[d_L\rightarrow U^d_L d_L\]

\[d_R\rightarrow U_R^d d_R\]

\[u_L\rightarrow U_L^uu_L\]

\[u_R\rightarrow U_R^uu_R\]

\[\mathcal{L}=\frac{q_2}{\sqrt{2}}[W^+_\mu\bar{u}^i_L\gamma^\mu(V)^{ij}d^j_L+W^-_\mu\bar{d}^i_L\gamma^\mu(V^\dagger)^{ij}\mu^j_L\]

 

\[v_{ckm}=\begin{pmatrix}1&0&0\\0&c_{23}&s_{23}\\0&-s_{23}&c_{23}\end{pmatrix}\begin{pmatrix}c_{13}&0&s_{13}^{1\delta}\\0&1&0\\-s_{13}^{i\delta}&0&c_{13}\end{pmatrix}\begin{pmatrix}c_{12}&s_{12}&0\\-s_{12}c_{12}&0\\0&0&1\end{pmatrix}\]

\[\begin{pmatrix}c_{12}c_{13}&c_{12}c_{13}&s_{13}^{-i\delta}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta}&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta}&s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta}&-c_{12}s_{23}-s_{12}c_{23}-s_{12}c_{23}s_{12}e^{i\delta}&c_{23}c_{12}\end{pmatrix}\]

\[s_{ij}=sin\theta_{ij}\]

\[c_{ij}=cos\theta_{ij}\]

\[ic=[Y_\mu y^\dagger_\mu ,Y_d Y^\dagger_d]=[U_\mu M^\dagger_\mu,U_d M^2_d U^\dagger_d]=U_\mu[M^2_\mu,VM^2_dV^\dagger]U^\dagger_\mu\]

Vandermond formula needed for above for next step...

Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation

C.Jarlskog

 

https://kernel-cdn.niconi.org/2021-10-19/1634657105-497108-physrevlett551039.pdf

https://pages.cs.wisc.edu/~sifakis/courses/cs412-s13/lecture_notes/CS412_12_Feb_2013.pdf

Valndermonde polynomial interpolation for Langrange to reduce computations for curve fitting.

 

https://orionquest.github.io/Numacom/lectures/interpolation.pdf

 

Edited by Mordred
  • 3 weeks later...
Posted (edited)

Thermodynamic equilibrium 

\[\rho=\frac{g}{(2\pi)^3}\int d^3 p E f(\vec{p})=\begin{cases}\frac{\pi^2}{30}geffT^4&T\ge m\\m,n&T\le m \end{cases}\]

\[g_{eff}=\sum_{i=b} gi (\frac{T_i}{T})^4+\frac{7}{8}\sum_{i=f}gi(\frac{t_i}{T}^4\]

\[P=\frac{g}{2\pi^2}^3\int d^3p\frac{p^2}{3E} f(\vec{p}\]

further details equation 130 to 138

https://mypage.science.carleton.ca/~yuezhang/Cosmology note.pdf

number density

\[n=\int_0^\infty n(p)dp\]

energy density

\[U=\int^\infty_0 n(p)\epsilon_p dp\]

pressure

\[P=\frac{1}{3}\int^\infty_0  n{p} v_pp dp\]

\(v_p=p/m\) and \(\epsilon p^2/m\)= non relativistic, relativistic \(v_p=c, \epsilon_p=pc\)

hence

\[P_{nr}=1/3\int^\infty_0 2\epsilon_p n(p) dp\rightarrow P=2/3 U\]

\[P_{ER}=1/3\int^\infty_0 \epsilon_p n(p) dp\rightarrow P=1/3 U\]

where

\[n(p)n dp=n(\epsilon()\frac{g}{h^3}4\pi p^2 dp\] 

g is statistical weight

\[n(\epsilon)=\begin{cases}\frac{1}{e^{\epsilon-\mu}/KT+0}& Maxwell\\\frac{1}{e^{\epsilon-\mu}/KT+1}& fermions\\\frac{1}{e^{\epsilon-\mu}/KT-1}&bosons\end{cases}\]

Bose_Einstein

\[n_i = \frac {g_i} {e^{(\varepsilon_i-\mu)/kT} - 1}\]

Fermi_Dirac

\[n_i = \frac{g_i}{e^{(\epsilon_i-\mu) / k T} + 1}\]

Maxwell

\[\frac{N_i}{N} = \frac {g_i} {e^{(\epsilon_i-\mu)/kT}} = \frac{g_i e^{-\epsilon_i/kT}}{Z}\]

Saha

\[\frac{n_i+n_e}{n_i}=\frac{2}{\omega^3}\frac{g_i+1}{g_i}exp[-\frac{(\epsilon_i+1-\epsilon_i)}{k_BT}\]

\[\rho_R=\frac{\pi^2}{30}{g_{*S}=\sum_{i=bosons}gi(\frac{T_i}{T})^3+\frac{7}{8}\sum_{i=fermions}gi(\frac{T_i}{T})}^3\]

\[S=\frac{2\pi^2}{45}g_{*s}(at)^3=constant\]

Physics of the Interstellar medium

The Physics of the Intergalactic Medium.pdf

 

 

 

Edited by Mordred
Posted (edited)

Recessive Velocity corrections past Hubble Horizon approx z=1.46

\[E_Z=[\Omega_R(1+z)^4+\Omega_m(1+z)^3+\Omega_k(1+z)^2+\Omega_\Lambda]^{1/2}\]

\[v_{r}=\frac{\dot{a}}{a_0}D\]

\[\frac{\dot{a}(t_0)}{a_o}=\frac{H(z_0)}{1+z_o)}=\frac{H_0E(z_o)}{1+z_O}\]

\[v_r=\frac{cE(z_o)}{1+z_o}\int^{z^{obs}}_0\frac{dz}{1+z_o}\frac{D_c(Z_o,Z_s)}{D_H}\]

\(Z_{os}\) is the reduced redshift

\[1+z_{os}=\frac{1+z_s}{1+z_o}\]

for observerd source redshift z_s

present epoch Observer \(z_0=0 ,E(Z_o)/1+(z_o)=1\)

\[v_r=(o,z)=c\int^z_o\frac{dz}{E(z)}=c\frac{D_c(z)}{D_H}\]

gives redshift as a multiple of speed of light

 

 

Edited by Mordred

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.