Dhamnekar Win,odd Posted May 6, 2023 Posted May 6, 2023 (edited) Let E be a finite nonempty set and let [math]\Omega := E^{\mathbb{N}}[/math] be the set of all E-valued sequences [math] \omega = (\omega_n)_{n\in \mathbb{N}}[/math]. For any [math] \omega_1, \dots,\omega_n \in E[/math] Let [math][\omega_1, \dots,\omega_n]= \{\omega^, \in \Omega : \omega^,_i = \omega_i \forall i =1,\dots,n \}[/math] be the set of all sequences whose first n values are [math]\omega_1,\dots, \omega_n[/math]. Let [math]\mathcal{A}_0 =\{\emptyset\}[/math] for [math]n\in \mathbb{N}[/math] define [math]\mathcal{A}_n :=\{[\omega_1,\dots,\omega_n] : \omega_1,\dots, \omega_n \in E\}[/math]. Hence show that [math]\mathcal{A}= \bigcup_{n=0}^\infty \mathcal{A}_n[/math] is a semiring but is not a ring if (#E >1). My answer: Let's consider an example where [math]E = \{0,1\}[/math] and [math]\Omega = E^{\mathbb{N}}[/math] is the set of all E-valued sequences. For any [math]\omega_1,\dots,\omega_n \in E[/math], we have [math][\omega_1,\dots,\omega_n] = \{\omega \in \Omega : \omega_i = \omega_i \forall i = 1,\dots,n\}[/math] which is the set of all sequences whose first [math]n[/math] values are [math]\omega_1,\dots,\omega_n[/math]. Let [math]\mathcal{A}_0 = \{\emptyset\}[/math] and for [math]n \in \mathbb{N}[/math] define [math]\mathcal{A}_n := \{[\omega_1,\dots,\omega_n] : \omega_1,\dots,\omega_n \in E\}.[/math] Hence [math]\mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n[/math] is a semiring but not a ring if # E > 1. To see why [math]\mathcal{A}[/math] is a semiring, let's verify that it satisfies the three conditions for a semiring. First, it contains the empty set because [math]\mathcal{A}_0 = \{\emptyset\}[/math] and [math]\mathcal{A} = \bigcup_{n=0}^\infty \mathcal{A}_n[/math]. Second, for any two sets [math]A,B \in \mathcal{A}[/math], their difference [math]B \setminus A[/math] is a finite union of mutually disjoint sets in [math]\mathcal{A}[/math]. For example, let [math]A = [0][/math] and [math]B = [1][/math], then [math]B \setminus A = [1][/math], which is in [math]\mathcal{A}[/math]. Third, [math]\mathcal{A}[/math] is closed under intersection. For example, let [math]A = [0][/math] and [math]B = [1][/math], then [math]A \cap B = \emptyset[/math], which is in [math]\mathcal{A}[/math]. However, [math]\mathcal{A}[/math] is not a ring because it does not satisfy all three conditions for a ring. Specifically, it does not satisfy condition (ii) for a ring, which requires that [math]\mathcal{A}[/math] be closed under set difference. For example, let [math]A = [0,0]][/math] and [math]B = [0,1][/math], then [math]B \setminus A = [0,1] \setminus [0,0] = [0,1][/math], which is not in [math]\mathcal{A}[/math]. I hope this example helps to illustrate why [math]\mathcal{A}[/math] is a semiring but not a ring if the cardinality of [math]E[/math] is greater than 1. Is this answer correct? Edited May 6, 2023 by Dhamnekar Win,odd Latex errors rectifications
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now