Jump to content

Recommended Posts

Posted

(From: Rieffel, Eleanor G.; Polak, Wolfgang H.. Quantum Computing: A Gentle Introduction.)

image.png.3b1a57aa932f13dbc12e9607659905fa.png

Take v in S1 and w in S2: 〈v|w〉 = 0.

〈Uv|Uw〉 = 〈v|UU|w〉 = 〈v|w〉 = 0.

Too easy.

Posted (edited)

image.png.aec7931b10e7dd916969f90ef4be6f8b.png

a. U =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 

b. Same as a but in the {|+〉, |-〉} basis.

c. If such U existed, it would transform U(|00〉) = |00〉 and U(|10〉) = |11〉.

Then U(|+〉|0〉) = U(1/√2 (|0〉 + |1〉)|0〉) = 1/√2 (|00〉 + |11〉) ≠ |++〉, i.e. |+〉 would not be cloned.

 

 

Edited by Genady
Posted

Continuing exercise 5.2 above.

d. Construct the operator as follows:

U = 

/* required cloning */

|0+ 0+〉 〈0+ 0+| + |0- 0-〉 〈0- 0+| + |1+ 1+〉 〈1+ 0+| + |1- 1-〉 〈1- 0+| +

/* transpose */

                              |0- 0+〉 〈0- 0-| + |1+ 0+〉 〈1+ 1+| + |1- 0+〉 〈1- 1-| +

/* diagonal */

                             |0+ 0-〉 〈0+ 0-| + |0- 0+〉 〈0- 0+| + |0- 0-〉 〈0- 0-| + 

|0+ 1+〉 〈0+ 1+| + |0+ 1-〉 〈0+ 1-| + |0- 1+〉 〈0- 1+| + |0- 1-〉 〈0- 1-| +

|1+ 0+〉 〈1+ 0+| + |1+ 0-〉 〈1+ 0-| + |1- 0+〉 〈1- 0+| + |1- 0-〉 〈1- 0-| + 

|1+ 1+〉 〈1+ 1+| + |1+ 1-〉 〈1+ 1-| + |1- 1+〉 〈1- 1+| + |1- 1-〉 〈1- 1-|

 

e. This set includes c, thus impossible to clone.

Posted

I've made errors in the 'diagonal' part of the construction for the question 'd' above. One needs to be careful not to include diagonal terms in rows or columns which already have terms in them. Thus, the correction:

/* diagonal */

                             |0+ 0-〉 〈0+ 0-| +                            

|0+ 1+〉 〈0+ 1+| + |0+ 1-〉 〈0+ 1-| + |0- 1+〉 〈0- 1+| + |0- 1-〉 〈0- 1-| +

                             |1+ 0-〉 〈1+ 0-| +                             |1- 0-〉 〈1- 0-| + 

                             |1+ 1-〉 〈1+ 1-| + |1- 1+〉 〈1- 1+|

Posted

image.png.f89ed23a7576d90ed5c5b3b424795ae4.png

(For the reference, the BB84 is described here: https://www.scienceforums.net/topic/132653-quantum-key-distribution/)

I assume that Eve always measures her qubit in the standard basis. Let's see what happens:

1. Alice's bit is 0.

1.1. Alice and Bob pick the standard basis. She sends |0〉. Eve applies Cnot: |0〉|0〉 ↦ |0〉|0〉.

         Bob gets 0. Correct. Eve gets 0. Correct.

1.2. Alice and Bob pick the Hadamard basis. Alise sends 1/√2(|0〉+|1〉). Eve applies Cnot: 1/√2(|0〉+|1〉)|0〉 ↦ 1/√2(|0〉|0〉+|1〉|1〉). 

1.2.1. Bob gets 0. Correct. Eve gets 0. Correct.

1.2.2. Bob gets 0. Correct. Eve gets 1. Error.

1.2.3. Bob gets 1. Error. Eve gets 0. Correct.

1.2.4. Bob gets 1. Error. Eve gets 1. Error.

2. Alice's bit is 1.

2.1. Alice and Bob pick the standard basis. She sends |1〉. Eve applies Cnot: |1〉|0〉 ↦ |1〉|1〉.

         Bob gets 1. Correct. Eve gets 1. Correct.

2.2. Alice and Bob pick the Hadamard basis. Alise sends 1/√2(|0〉-|1〉). Eve applies Cnot: 1/√2(|0〉-|1〉)|0〉 ↦ 1/√2(|0〉|0〉-|1〉|1〉). 

2.2.1. Bob gets 0. Error. Eve gets 0. Error.

1.2.2. Bob gets 0. Error. Eve gets 1. Correct.

1.2.3. Bob gets 1. Correct. Eve gets 0. Error.

1.2.4. Bob gets 1. Correct. Eve gets 1. Correct.

 

Looks like Eve gets 75% of Alice's bits correctly and introduces 25% errors in the bits measured by Bob, the same as in the original scheme.

Am I missing something?

 

Posted

image.png.50859153cfa1a2e9607d82ce45ebf0a8.png

For the reference:

image.png.f2fc1329a2f1e1ff9668f969d18f0ba7.png

image.png.ba61f3e73347f03b83921ec7806094c9.png

image.png.a79f5670014f4169688ff0b47f8ca23f.png

K(0) = T(0) = R(0) = I. Thus, K(0)T(0)R(0)T(0) = I.

T(π/2) =  i *

1 0
0 -1

R(π/2) = 

0 1
-1 0

T(π/2)R(π/2)T(0) = iX. X = -iT(π/2)R(π/2)T(0).

R(π/4) = 1/√2*

1 1
-1 1

T(π/2)R(π/4)T(0) = iH. H = -iT(π/2)R(π/4)T(0).

 

 

Posted

An n-qubit cat state is the state 1/√2 (|00 . . . 0〉 + |11 . . . 1). Design a circuit that, upon input of |00 . . . 0〉, constructs a cat state.

========

My idea is first to transform the first qubit to the superposition using the Hadamard gate and then to propagate the result to the rest of the qubits with the Cnot gates:

image.png.fc042d4a6ea1e5c7fe728d211b809f57.png

 

 

 

 

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.