KJW Posted December 8, 2023 Posted December 8, 2023 (edited) 1c2∂2ψ∂t2−∂2ψ∂x2−∂2ψ∂y2−∂2ψ∂z2=−m2c2ℏ2ψ Let ψ=ψ0exp(iS(t,x,y,z)ℏ) ∂2ψ∂t2=∂∂t(∂∂texp(iS(t,x,y,z)ℏ)) \[\frac{\partial^2\psi}{\partial t^2} = \psi_0 \frac{\partial}{\partial t}(\frac{\partial}{\partial t} exp(i\frac{S(t,x,y,z)}{\hbar})) = \psi_0 \frac{\partial}{\partial t}(\frac{i}{hbar} exp(i\frac{S(t,x,y,z)}{\hbar}) \frac{\partial S(t,x,y,z)}{\partial t})\] Edited December 8, 2023 by KJW
KJW Posted December 8, 2023 Author Posted December 8, 2023 (edited) Klein-Gordon equation: \[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \] \[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\] where S(t,x,y,z) is the action \[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\] \[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation: \[(\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] Edited December 8, 2023 by KJW
KJW Posted December 8, 2023 Author Posted December 8, 2023 (edited) Klein-Gordon equation: \[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \] \[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\] where [math]S(t,x,y,z)[/math] is the action. \[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\] Similarly: \[\frac{\partial^2\psi}{\partial x^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial x^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial x})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial y^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial y^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial y})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial z^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial z^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial z})^2\] Thus: \[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation: \[\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2 = m^2c^2\] Edited December 8, 2023 by KJW
KJW Posted December 19, 2023 Author Posted December 19, 2023 (edited) [math]1 \longleftrightarrow 1[/math] [math]2 \longleftrightarrow 4[/math] [math]3 \longleftrightarrow 9[/math] [math]4 \longleftrightarrow 16[/math] [math]5 \longleftrightarrow 25[/math] [math]6 \longleftrightarrow 36[/math] [math]7 \longleftrightarrow 49[/math] [math]8 \longleftrightarrow 64[/math] [math]...[/math] [math]n \longleftrightarrow n^2[/math] [math]...[/math] [math]\textstyle \mathbb {N}[/math] Edited December 19, 2023 by KJW
KJW Posted December 24, 2023 Author Posted December 24, 2023 (edited) [math]\textstyle 2\mathbb {Z}[/math] [math]2\textstyle 2\mathbb {Z}[/math] [math]\mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZ}[/math] Edited December 24, 2023 by KJW
KJW Posted December 25, 2023 Author Posted December 25, 2023 (edited) [math] \documentclass{article} \begin{document} Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$. \end{document} [/math] [math]Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.[/math] Edited December 25, 2023 by KJW
KJW Posted December 26, 2023 Author Posted December 26, 2023 [math]\displaystyle \lim _{n \to \infty} a_{n}=L[/math] [math]\lim _{n \to \infty} a_{n}=L[/math]
KJW Posted December 27, 2023 Author Posted December 27, 2023 (edited) [math]f(x)\; {\buildrel\rm def\over=} \;x+1[/math] [math]\buildrel\rm def\over=[/math] [math]\buildrel def \over=[/math] Edited December 27, 2023 by KJW
KJW Posted December 30, 2023 Author Posted December 30, 2023 (edited) [math]\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk} = \dfrac{1}{1 + x^{n}} \\ y = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk}[/math] Edited December 30, 2023 by KJW
KJW Posted January 4, 2024 Author Posted January 4, 2024 (edited) [math]\overbrace{\dfrac{d}{dx} \Biggl( \Biggr. x \cdots \dfrac{d}{dx} \Biggl( \Biggr. x}^{n}\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{k} \Biggl. \Biggr) \cdots \Biggl. \Biggr) = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} (k+1)^n x^{k} = \eta(-n)[/math] for [math]x = 1[/math] Edited January 4, 2024 by KJW
KJW Posted January 5, 2024 Author Posted January 5, 2024 (edited) deleted Edited January 5, 2024 by KJW
KJW Posted January 12, 2024 Author Posted January 12, 2024 (edited) deleted Edited January 12, 2024 by KJW
KJW Posted January 13, 2024 Author Posted January 13, 2024 (edited) deleted Edited January 13, 2024 by KJW
KJW Posted January 17, 2024 Author Posted January 17, 2024 (edited) [math]\times\!\!\!\!\phi^2[/math] Edited January 17, 2024 by KJW
KJW Posted January 27, 2024 Author Posted January 27, 2024 (edited) deleted Edited January 27, 2024 by KJW
KJW Posted March 30, 2024 Author Posted March 30, 2024 (edited) [math](ds)^2 = (c^2 - \dfrac{r^2}{t^2}) (dt)^2 + \color{red} {\dfrac{2r}{t} (dt)(dr)} - (dr)^2 - r^2 ((d\theta)^2 + sin^2 \theta (d\phi)^2)[/math] For me to complete this, I need to apply a coordinate transformation to remove the part in red. 😉 Edited March 30, 2024 by KJW
KJW Posted May 10, 2024 Author Posted May 10, 2024 (edited) [math]\buildrel \rm def \over =[/math] Edited May 10, 2024 by KJW
KJW Posted May 24, 2024 Author Posted May 24, 2024 (edited) test bold test italic test underline test strikethrough test subscript test superscript test font size="72" test end Edited May 24, 2024 by KJW
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now