KJW Posted December 8, 2023 Posted December 8, 2023 (edited) 1c2∂2ψ∂t2−∂2ψ∂x2−∂2ψ∂y2−∂2ψ∂z2=−m2c2ℏ2ψ Let ψ=ψ0exp(iS(t,x,y,z)ℏ) ∂2ψ∂t2=∂∂t(∂∂texp(iS(t,x,y,z)ℏ)) \[\frac{\partial^2\psi}{\partial t^2} = \psi_0 \frac{\partial}{\partial t}(\frac{\partial}{\partial t} exp(i\frac{S(t,x,y,z)}{\hbar})) = \psi_0 \frac{\partial}{\partial t}(\frac{i}{hbar} exp(i\frac{S(t,x,y,z)}{\hbar}) \frac{\partial S(t,x,y,z)}{\partial t})\] Edited December 8, 2023 by KJW
KJW Posted December 8, 2023 Author Posted December 8, 2023 (edited) Klein-Gordon equation: \[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \] \[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\] where S(t,x,y,z) is the action \[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\] \[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation: \[(\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] Edited December 8, 2023 by KJW
KJW Posted December 8, 2023 Author Posted December 8, 2023 (edited) Klein-Gordon equation: \[\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} - \frac{\partial^2\psi}{\partial x^2} - \frac{\partial^2\psi}{\partial y^2} - \frac{\partial^2\psi}{\partial z^2} = -\frac{m^2c^2}{\hbar^2}\psi \] \[\psi = \psi_0 exp(\frac{i}{\hbar} S(t,x,y,z))\] where [math]S(t,x,y,z)[/math] is the action. \[\frac{\partial^2\psi}{\partial t^2} = \frac{\partial}{\partial t}(\frac{\partial}{\partial t} \psi_0 exp(\frac{i}{\hbar} S)) = \frac{\partial}{\partial t}(\frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial S}{\partial t}) = \frac{i}{\hbar} \psi_0 exp(\frac{i}{\hbar} S) \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi_0 exp(\frac{i}{\hbar} S) (\frac{\partial S}{\partial t})^2 = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial t^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial t})^2\] Similarly: \[\frac{\partial^2\psi}{\partial x^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial x^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial x})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial y^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial y^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial y})^2 \;\;;\;\; \frac{\partial^2\psi}{\partial z^2} = \frac{i}{\hbar} \psi \frac{\partial^2 S}{\partial z^2} - \frac{1}{\hbar^2} \psi (\frac{\partial S}{\partial z})^2\] Thus: \[-i\hbar (\frac{1}{c^2}\frac{\partial^2 S}{\partial t^2} - \frac{\partial^2 S}{\partial x^2} - \frac{\partial^2 S}{\partial y^2} - \frac{\partial^2 S}{\partial z^2}) + (\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2) = m^2c^2\] In the classical limit of [math]\hbar = 0[/math], the linear second-order Klein-Gordon equation becomes the non-linear first-order Hamilton-Jacobi equation: \[\frac{1}{c^2}(\frac{\partial S}{\partial t})^2 - (\frac{\partial S}{\partial x})^2 - (\frac{\partial S}{\partial y})^2 - (\frac{\partial S}{\partial z})^2 = m^2c^2\] Edited December 8, 2023 by KJW
KJW Posted December 19, 2023 Author Posted December 19, 2023 (edited) [math]1 \longleftrightarrow 1[/math] [math]2 \longleftrightarrow 4[/math] [math]3 \longleftrightarrow 9[/math] [math]4 \longleftrightarrow 16[/math] [math]5 \longleftrightarrow 25[/math] [math]6 \longleftrightarrow 36[/math] [math]7 \longleftrightarrow 49[/math] [math]8 \longleftrightarrow 64[/math] [math]...[/math] [math]n \longleftrightarrow n^2[/math] [math]...[/math] [math]\textstyle \mathbb {N}[/math] Edited December 19, 2023 by KJW
KJW Posted December 24, 2023 Author Posted December 24, 2023 (edited) [math]\textstyle 2\mathbb {Z}[/math] [math]2\textstyle 2\mathbb {Z}[/math] [math]\mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZ}[/math] Edited December 24, 2023 by KJW
KJW Posted December 25, 2023 Author Posted December 25, 2023 (edited) [math] \documentclass{article} \begin{document} Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$. \end{document} [/math] [math]Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.[/math] Edited December 25, 2023 by KJW
KJW Posted December 26, 2023 Author Posted December 26, 2023 [math]\displaystyle \lim _{n \to \infty} a_{n}=L[/math] [math]\lim _{n \to \infty} a_{n}=L[/math]
KJW Posted December 27, 2023 Author Posted December 27, 2023 (edited) [math]f(x)\; {\buildrel\rm def\over=} \;x+1[/math] [math]\buildrel\rm def\over=[/math] [math]\buildrel def \over=[/math] Edited December 27, 2023 by KJW
KJW Posted December 30, 2023 Author Posted December 30, 2023 (edited) [math]\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk} = \dfrac{1}{1 + x^{n}} \\ y = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{nk}[/math] Edited December 30, 2023 by KJW
KJW Posted January 4 Author Posted January 4 (edited) [math]\overbrace{\dfrac{d}{dx} \Biggl( \Biggr. x \cdots \dfrac{d}{dx} \Biggl( \Biggr. x}^{n}\displaystyle \sum_{k=0}^{\infty} (-1)^{k} x^{k} \Biggl. \Biggr) \cdots \Biggl. \Biggr) = \displaystyle \sum_{k=0}^{\infty} (-1)^{k} (k+1)^n x^{k} = \eta(-n)[/math] for [math]x = 1[/math] Edited January 4 by KJW
KJW Posted January 17 Author Posted January 17 (edited) [math]\times\!\!\!\!\phi^2[/math] Edited January 17 by KJW
KJW Posted March 30 Author Posted March 30 (edited) [math](ds)^2 = (c^2 - \dfrac{r^2}{t^2}) (dt)^2 + \color{red} {\dfrac{2r}{t} (dt)(dr)} - (dr)^2 - r^2 ((d\theta)^2 + sin^2 \theta (d\phi)^2)[/math] For me to complete this, I need to apply a coordinate transformation to remove the part in red. 😉 Edited March 30 by KJW
KJW Posted May 10 Author Posted May 10 (edited) [math]\buildrel \rm def \over =[/math] Edited May 10 by KJW
KJW Posted May 24 Author Posted May 24 (edited) test bold test italic test underline test strikethrough test subscript test superscript test font size="72" test end Edited May 24 by KJW
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now