Meital Posted October 4, 2005 Posted October 4, 2005 Can you guys tell me if my answer is correct? Determine if the following functions satisfy local or uniform Lipschitz condition. 1). te^y I found d/dy (te^y) = te^y, and this is not bounded above for any value of y, so this made me conclude that it has locally Lipschitz condition since the Lipschitz constant here changes as the reagion changes? Am I right? I used the equation | f(t,y_1) - f(t, y_2) | = d/dy(f(t,y)) + | y_1 - y_2| 2). y t^2/ (1 + y^2) I used the same approach here and d/dy (f ) = t^2 - 2y + y^2/ ( 1 + y^2)^2, which is clearly could be bounded above by a constant but this constant changes as the reagion changes so it is local lipschitz.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now