cosine Posted October 17, 2005 Posted October 17, 2005 Could anyone help me find this integral? I've been going back to it occasionally on and off for a year and a half. I once had access to mathematica, which gave me a strange string for the integral. At the time I couldn't understand it, but I may be able to understand it now. Here is the integral I'm trying to find: [math]\int^{1}_{-1}\left[(-x)^{k}(1-x^{k})^{1-k} + 1\right]^{\frac{1}{k}}dx[/math] If anyone could help I would be very much obliged, it is an interesting integral.
TD Posted October 17, 2005 Posted October 17, 2005 I don't think it exists when x = 0, since you then get 1^(1/0). Mathematica tells me it doesn't converge on [-1,1]...
cosine Posted October 17, 2005 Author Posted October 17, 2005 I don't think it exists when x = 0' date=' since you then get 1^(1/0).Mathematica tells me it doesn't converge on [-1,1']... Do you mean when k=0?
TD Posted October 17, 2005 Posted October 17, 2005 Eh, I misread: it says a k there, my bad Mathematica still says it doesn't converge though.
NeonBlack Posted October 17, 2005 Posted October 17, 2005 Assuming k is an integer > 0, here are some midpoint approximations: k=1; 2.0 k=2; 3.129495 k=3; k=4; 3.380247 k=5; k=6; 3.292757 k=7; k=8; 3.145137 k=9; So it looks like it's undefined for odd k > 1. Who knows how accurate these are. Maybe someone will give the FTo'C a shot. I'm not even sure if that's possible though. EDIT: as not to confuse anyone, I meant to say that the function itself is defined for odd k, but it has no area on [-1,1]
cosine Posted October 17, 2005 Author Posted October 17, 2005 Assuming k is an integer > 0' date=' here are some midpoint approximations:k=1; 2.0 k=2; 3.129495 k=3; k=4; 3.380247 k=5; k=6; 3.292757 k=7; k=8; 3.145137 k=9; So it looks like it's undefined for odd k > 1. Who knows how accurate these are. Maybe someone will give the FTo'C a shot. I'm not even sure if that's possible though. EDIT: as not to confuse anyone, I meant to say that the function itself is defined for odd k, but it has no area on [-1,1'] Cool thanks, those are very interesting values. How did you get at them exactly? What does FT o'C mean? and I can tell you that for k = 2 the answer is pi.
NeonBlack Posted October 17, 2005 Posted October 17, 2005 I got these using the midpoint rule for approximations. FTo'C is the Fundamental Theorem o' Calculus. edit: the values I gave you were computed using n=10 000. I just tried it with n= 100 million k=2 and came up with 3.141461, it took my computer like 4 full minutes to compute. So we are getting closer to pi.
cosine Posted October 17, 2005 Author Posted October 17, 2005 I got these using the midpoint rule for approximations. FTo'C is the Fundamental Theorem o' Calculus. edit: the values I gave you were computed using n=10 000. I just tried it with n= 100 million k=2 and came up with 3.141461' date=' it took my computer like 4 full minutes to compute. So we are getting closer to pi.[/quote'] Awesome. Wow thats alot of iterations though. <s>What are you taking the midpoint of though? Perhaps I just haven't heard of it referred to by that term.</s> Edit: LOL wow I just realized what you meant. Man such a log time since Reimann sums. Thanks though!
cosine Posted October 18, 2005 Author Posted October 18, 2005 By the way, I feel like you guys may like to know just what it is this integral means. For various distance formulas of the form [math]x^{k} + y^{k} = z^{k}[/math] what is the value of pi? Thus in the unit circle of that k is: [math]y = \left(1 - x^{k}\right)^{\frac{1}{k}}[/math] So the pi is going to be the arclength of the unit circle from -1 to 1. Though since your distance formula changed, the arclength formula changed. [math]\left(dx^{2} + dy^{2}\right)^{\frac{1}{2}}[/math] becomes: [math]\left(dx^{k} + dy^{k}\right)^{\frac{1}{k}}[/math] Which leads to the general integral of this discussion. It should give the corresponding pi for every k.
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now